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ABSTRACT

This paper is concerned with obtaining a tolerance interval
(TI) for a linear combination of independent random variables
(RV's) in terms of TI's of the individual RV's. Ordinarily, the
probability density function (pdf) of the linear combination must
be obtained by convolution.

An algorithm is considered which obtains the desired TI
without resorting to convolution. The individual TI's are defined
relative to a common confidence léVel. The remainder of the
paper is concerned with the conditionxéalled "Iinear conformity"
in which the TI formed using the algorithm results in a confidence
level of at least that for the individual TI's. Properties of the
Fourier transform of the pdf's are related to the linear confor-
mity of the distributions. An important family of transforms are
shown to be linearly conformal. Finally, a heuristic procedure is
developed such that arbitrary pdf's can be classified with respect
to linear conformity.
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1. INTRODUCTION

In many situations of reliability analysis, automated test-
ing and pattern recognition, one is faced with linear combinations
of random variables (RV's). For example, in automated testing of
nonlinear devices, statistically based interpolation and extra-
polation techniques exist [4, 5] which take the form of linear
combinations of statistically generated data points. In both
reliability analysis and pattern recognition, one may be faced
with a decision rule which is a linear function of several inde-
pendent parameters. Often, the parameters cannot be directly
measured, but instead are known through probability distributions.
Such a situation exists in process'control of integrated circuit
fabrication in which process parameters must be held to specific

ranges [3].

-
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Consider that a statistical bound on a linear combination of
RV's is desired. If the summed RV's are independent, the RV
representing the linear combination has a distribution which is
obtained by a weighted convolution of the individual probability
distribution functions. Each time the linear combination changes,
the convolved function changes. When convolution is obtained
analytically, a change in one or more distribution parameters or
weighting functions corresponds to changing the same parameter in
the convolved function expression. Frequently, however, ahalysis
is being done numerically in computer environments, so that the
convolution process must be executed when such changes occur.

Obviously, applicationé involving a dynamic analysis in which



many parameter changes occur can result in enormous computation
time.

In addition to the preceding computational problem, other
problems occur in practical situations. The summed RV's often
represent physical quantities having some degree of statistical
correlation. This dependency, when taken into account, compounds
the above computational problem. Additionally, the effort
required to determine a probability distribution function can be
costly in terms of the amount of data that must be gathered. One
may be limited to determining tolerance limits [6] for a physical
quantity, since such limits require far less data for their
estimation than are required for distribution functions.

This paper examines a "tolerance interval" (TI) bound on a
linear combination of RV's determined as a simple combination of
TI's of the summed RV's. The process of combingfion, called the
Bounding Algorithm (BA), avoids a direct utilization of probability
density functions (pdf's) and thus évoids the above mentioned
problems of conventional analytic approaches. The bulk of the
paper is concerned with establishing a condition for which the
TI formed by the BA is a conservative bound. This condition,
called linear conformity, is first established analytically for
a family of pdf's. 1In addition, a heuristic technique is
presented which enables one to analyze pdf's not belonging to
this family with respect to linear conformity. Statistical

dependence between the summed RV's is discussed, and it is argued



why the BA results in conservative bounds, even for the dependency
case.
2. DEFINITIONS AND ASSUMPTIONS

Consider the linear combination of RV's

n
Y = Zi=lcixi (2.1)

where the C;'s are constants and the Xi's are RV's. Assume that
corresponding to each RV X;r, a continuous pdf gi(u) exists.
Further assume that gij (u) is symmetric with zero mean. (The
requirement of a zero mean is made without loss of generality,
since the Xj's and Y may be redefined to accomplish this.)
Define the tolerance interval (TI)'for X; with confidence level
(CL) a, such that the probability .

p{IX.|<a.}E faig-(u)du=a. \ e (2.2)
1= 1 _ail

Definition 1 (Tolerance Interval)-The TI for X4{ having CL a,

written (—ai,ai) is defined according to (2.2), where the pdf for
X; is assumed to be symmetric with a zero mean.

Definition 2 (Bounding Algorithm)-Let the TI's for each X; in

(2.1) be defined according to Def. 1, corresponding to a common

CL, a. The TI for Y is (—aY,aY], such that

N
aY = Xl=lallcll (2.3)

Definition 3 (Composite Tolerance Interval)-The TI determined

according to Def. 2 is called the composite tolerance interval

(CTI).



The BA may appear to result in a "worst-case" combination of
the individual TI's. A simple example will be given shortly to
show that such is not always the case. But first, a condition
will be defined regarding the applicability of the BA in obtaining
a conservative bound on RV Y of (2.1).

Definition 4 (Linear Conformity)-If a CTI for Y in (2.1) is

obtained using the BA, and the CL for each of the individual TI's
[-ai,ai] is o, then the collection of pdf's for the Xi's is said
to be "linearly conformal" (LC) if and only if the CL correspond-
ing to the CTI is at least a for all values of the Ci's, and with
no restriction on a.

When the N pdf's are LC, and in addition have the same general
distribution form, with perhaps different distribution parameters,

hY

this general distribution is said to be "self-linearly conformal"
.
.

(SLC) .

Definition 5 (Conditional Linear Conformity)-If for the previous

definition, there exists a minimum value of a for which the CTI
CL is at least that of the individual TI's for all values of the
Ci's, then the collection of pdf's are said to be "conditionally
linearly conformal".

In order to demonstrate that one cannot always assume the
condition of LC, consider the discrete probability distribution
of Table 1. Suppose RV's Xl and X2 have the distribution of
Table 1 and are statistically independent. Let Y=X,+X,. Using

the summation
10 .
p{y=3}=Zi=_lop{xi=l}.p{X2=J_l}
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1. DISTRIBUTION WHICH IS NOT SELF-LINEARLY CONFORMAL

k p (X=k)
0 .2
+1 .1
¥2 .05
+3 .01
¥4 0
+5 0
+6 .02
¥7 .05
+8 ol
¥9 .05
+10 .02

and noting that p{lX2[>10}=0, the distribution for Y is obtained,
and is given in Table 2.

2. CONVOLVED DISTRIBUTION CORRESPONDING TO RANDOM VARIABLE Y

[

~

k p (Y=k) k p (¥Y=k)

0 .0968

+1 .0750 +11 .0110
+2 .0450 +12 .0034
+3 .0184 +13 .0024
¥4 .0083 +14 .0065
+5 .0120 +15 .0120
+6 .0291 +16 .0158
+7 .0494 +17 .0120
+8 .0640 +18 .0065
+9 .0494 ¥19 .0020
+10 .0290 20 .0004

Examination of the two tables reveals that if an a is selected
corresponding to (IXIik,k=0,l,2,3) then

p{-2k<y<2k}<p{-k<(X;AX,) <k}.



Therefore the probability distribution of Table 1 is only con-
ditionally LC. This example will be considered later.

The remainder of this paper will be concerned with methods
to determine if pdf's are SLC. 1In order to simplify the investi-
gation of linear conformity, Fourier analysis will be employed in
what follows:

3. FOURIER ANALYSIS

Several important properties of pdf's are discussed in this
section. These properties pertain to the Fourier transforms of
the pdf's, and will be useful in subsequent developments of this
paper. One recalls that convolution is the process by which the
pdf of a linear combination of independent RV's may be obtained.
Since convolution transforms to simple multiplication via the

Fourier Integral, it is natural to consider the Fourier transform

.
~

in investigating linear conformity. The following theorem contains
several important properties.

Theorem 1 - Given g(u), the pdf of RV X. If g(u) is symmetrical
about the origin of u, then the Fourier transform G(w) of g(u)

has the following properties:

a. G(w)|w=0=l (3.1)

b. Lim(dG(w)/dw)+Lim(dG(w)/dw)=0 (3.2)
w+04 w>0-

c. 0%?=-d2G(w)/dw?| __>0 (3.3)
w=0—

d. G(w) < 1, =o<p<e (3.4)

Proof - The first three parts of the theorem are established from

the moment theorem [7],



Wk k k
- =d"G d
(=3) "m_ (w) /dw lw=0

where j = (—1)* and where
o0
m = [ ukg(u)du
—— 00
for k = 0, 1, 2, respectively. One need only'recognize that for

g(u) a pdf with zero mean

[Tg(u)du=1, i:ug(u)=0, and i:uzg(u)du=c2

where 0? is the variance. The two limits in part a are required

for the special case where the derivative of G(w) at the origin

is discontinuous, as with the Cauchy distribution
B/m(B2+u?)+rexp(-Blw|), 310. (3.5)

The last part of the theorem follows from

|G(uo)|=|fmg(u)e"j“’u dul< giu)du=l. < QED

The preceding theorem will be useful when the shape of the
function G(w) near the origin is considered. One observes that
G(w) is positive decreasing near the origin, a fact that will be
useful shortly.

The next preliminary development concerns an alternative
expression of (2.2) utilizing the Fourier transform. (This
development is central to the subsequent analysis of this paper.)
Assuming as usual that RV X possesses a pdf, symmetric about a
zero mean, and assuming that the Fourier transform G(w) of g (u)
exists, one may replace g(u) by the inverse Fourier transform of

G(w) in (2.2) [7]:



pllx|<a =[%((1/2m) | 6(w) e’ dw)du=a. (3.6)
-a - 00

Interchanging the order of integration, and integrating with
respect to u, one obtains.

p{|X|<al=(1/m [ G(w)8in wa g, (3.7)
- 00 W

It was possible to interchange the order of integration in

(3.6) since the integrand was square integrable [7]. That is
i jwu o
(1/2m) [|G* (w)e” | 2dw<(1/2m) [|G? (w) |dw<e. (3.8)
-— OO - 00
The right hand inequality can be justified by

(l/2w)f|G2(w)ldw=(g(u)*g(u))|u_0=h(0)<m

-
where g(u) contains no impulses at the.origin [7]. h(u) is the
.

convolution of g(u) with itself ("*" denotes conbolution), and is
also a pdf. Therefore h(0) is finite unless g(u) is a delta
function.

Consider the effect of increasing the value of "a" in (3.7).
As this variable is increased, the integral must also increase
since it directly related to the probability of (3.7). The
function sin aw/w has the value "a" at the origin. The envelope
of this function is 1/w at some distance from the origin. Increas-
ing "a" also increases the frequency of the sinusoid so that
sin aw/w approaches the envelope curve more quickly. One observes
from the preceding discussion that as "a" is increased, the

behavior of G(w) near the origin tends to dominate the entire integral.



A similar effect of dominance can be shown for the TI
probability corresponding to a pdf convolved with itself. 1In
particular, a linear combination of RV's X1 and X, having a
common pdf g(u) has a pdf whose transform is G%(w) [7]. The TI
obtained from the BA is [-2a, 2a]. The probability expression
of (3.7) can be written with obvious substitutions as

p{|X1+X2|i2a}=(l/n)£:G2(w) sin 2 wa dw. (3.9)

w

Thus, from the previous discussion of the argument of sin wa/w,
the integral tends to be dominated by a region close to the origin.
Also, since in general G(w) is a positive monotonically decreas-
ing function near the origin, this decrease toward zero is made
more rapid fof the square of G(w). The integral of (3.9) is
dominated by a region closer to th; origin than that which
dominates the integral of (3.7). The dominant\%eature just
discussed is used in approximating the integrals of (3.7) and
(3.9) in Appendix C, where a heuristic classification procedure
is developed.

4. EXPONENTIAL TRANSFORM FAMILY

This section considers a family of functions referred to as
the "exponential transform family".

Definition 6 (Exponential Transform Family)-A function is a member

of the exponential transform family if and only if its Fourier
transform can be written as

Felk(w)=exp(-0|wk|), 0>0, k>0. (4.1)
A function belonging to this family is distinguished by the

parameters 0 and k.



This family is considered for several reasons. First, the
members for k equal to zero, one, and two correspond to the delta,
Cauchy, and Normal distributions, respectively. Second, each
subset of the family of members with a common value of k, exhibits
closure under the operation of convolution in the real domain,
and therefore multiplication in the w domain. This property
allows a simplified analysis to be made which is not generally
possible for other pdf's. Before proceeding, it should be pointed
out that the members of this family do not generally correspond
to pdf's. One can show that for integer k>2, the function of (4.1)
cannot correspond to a non-negative function in the real domain.

The following theorem considers the property of linear con-
formity with respect to family members which are pdf's.

Theorem 2 - Given the linear combiﬁation of N independent RV's,

.

: N 2
X;, with zero mean, Y = zi=1cixi' where the C; are constants.
If RV's X have pdf's which are Fourier transformable as F@ K
14

corresponding to (4.1), with common parameter k, then the
collection of these N pdf's is SLC (see Def. 4), if any only if
k>1. That is, for any a, Oca<i, if

p{|X;[<a;}=a (4.2)
then

N
p{ lYIiZi

___laiCi}ia (4.3)
if and only if k>1.
The proof of Theorem 2 is given in Appendix A.

When dealing with a linear combination of RV's whose distri-

butions correspond to a particular k-member of the exponential
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transform family, Theorem 2 can be used to determine if the
linear sum satisfies the condition of linear conformity. When
these RV distributions closely resemble but are not equal to a
family member, one may heuristically use the classification
associated with this family member.

One may consider alternative algorithms to the BA for
combining TI's. The sum-of-squares algorithm (SSA) is often used
when the individual RV's of a sum are Normally distributed and
independent [1l] (consideration of the SSA was suggested by
H. D. Helms of the Bell Telephone Laboratories, Holmdel, NJ).

In terms of the previous notation, the RV Y is bounded by

N 2~21% :
lvl<(L;_jafci)™. (4.4)
The following theorem relates the SSA to the property of linear
conformity and the exponential transform family.

Theorem 3 - Given the linear combination of N iﬁﬁependent RV's,

N C.X., where the Ci are constants. Let

Xj, with zero mean, Y = ], _.C;X;

the RV's X; have pdf's which are Fourier transformable as FO.,k
corresponding to (4.1). Let the TI for each RV be formed aslin
(2.2), with CL a. Then the TI formed using the SSA will
correspond to a CL of at least a, if and only if k>2.

The proof of this theorem is outlined in Appendix B. One
observes that the SSA yeilds a conservative bound on the linear
sum of RV's for the k=2 case only. As pointed out earlier, the
exponential transform function does not correspond to a pdf for
k>2. Since the k=2 case corresponds to the Normal distribution, -

it may be argued that the SSA provides a minimum width TI. A

11



formal argument can be given based on an information theoretic
approach, but is omitted here for reasons of brevity of the paper.
Intuitively, the Normal distribution is a maximum entropy pdf [8].
5. HEURISTIC CLASSIFICATiON OF ARBITRARY DISTRIBUTIONS

For the exponential transform family, it was determined that
the family member corresponding to k=1 was the critical function
which partitioned the family into two classes. For k>1, the
members were SLC, while for k<1, they were not SLC. It is
natural to look for a classification method which allows one to
compare a non-family member to the k=1 member in such a way as to
determine if this arbitrary function is SLC.

A classification procedure is possible for transforms of
arbitrary pdf's which meet certain‘conditions. This procedure

\ -

is heuristic due to certain approximations made in its develop~

-

ment. These approximations tend to be pessimiséic, as seen
shortly.

The following notation is used. The standard function
F(w)=exp(-0|w|) is compared to an arbitrary symmetric function
G(w). The heuristic procedure considers the linear combination

Y = X + X, {5eal)
in which X; and X, are RV's having the pdf g(u) which transforms
to G(w). If the TI for X; and X, are defined as in (2.2), then
the CL corresponding to the TI formed by the BA is given by (3.9).
The heuristic procedure considers the region in the positive w

plane for w<n/a. There are two classes of functions, G(w), for

which the procedure gives definite results. Refer to Figure l-a.

12



As w increases, G(w) is first less than F(w), then intersects F(w)
at W and finally is greater than F(w). The two functions inter-
sect at w=0 and wr. Note that © is chosen so that wr=m/2a. The
function G(w) in Figure l-a will be shown to be not SLC for the
particular value of parameter a.

In Figure 1l-b the reverse situation is observed. This class

of G(w) will be shown to be SLC for the particular value of a.

Heuristic Classification Procedure - Sketch G(w). Draw an F(w)

curve such that the two curves intersect at a particular wr. At
each wy such that G(wy) is between 1 and .25, G(w) is SLC if the
situation of 1-b is observed, or is not SLC if the situation of
Figure l-a is observed. Each of the Wy corresponds to a particular
value of the tolerance limit a=ﬂ/2ql. Usually, the function G(w)
will either belong entirely to one of the two classes. Also, if
s

more than one intersection occurs between F (w) aﬁd G(w) for a
specific value of "a", the heuristic is indeterminate at that
point.

Once the point at which G(w) is equal to .25 is reached
(the smallest |w| such that G(w) = .25), the heuristic is slightly
modified. Providing that only one intersection occurs in the
interval O<w<m/a, G(w) is classified as SLC or not SLC on the
basis of the classification at w_ o5, Where G(w.25)=.25, for a

<n/2w Using the heuristic over the positive w domain in this

25
manner, one determines the ranges of value "a" for which G(w) is SLC.
Although the heuristic requires that many F(w) curves be

constructed, the G(%) curve can usually be analyzed by inspection

13



using at most a few F(w) curves. One approach to analysis would
be to have a standard chart drawn with a family of exp(-0|w]|)
curves. One would then draw the G(w) curve normalized with
respect to a convenient scaling of w. This scaling would allow
G(w) to be fit on the standard chart.

The development of the heuristic is given in Appendix C.
As this derivation assumes equal weights of the RV's in (5.1),
one may find the conditions of this analysis severely limiting.
However, for many distributions, it is possible to show that the
equal weighted linear combination represents either the minimum
or the maximum probability combination with respect to the
relative variation of weights.

Consider the linear combination

\
\

Y = X3 +CX,. . (5.2)
This combination represents the various relative“Weightings of
the two RV's X; and X2, wﬁere the weight of X1 is unity without
loss of generality. For C=0, the probability associated with
the TI of Y is obviously that of X;. Assuming that X; and X,
have identical pdf's, the BA is applied as usual for some CL on

X; and X;. The actual CL of the TI formed by the algorithm is,

from (2.3) and (3.7).

pl |X1+CX2|§a+C-a}=(2/n) IOG(w) G(Cw)sin(a (1+C]w)dw {5.3)
W

where G(w) is the pdf transform for Xl and X2’ and "a" is the TI
constant of (2.2). One must show that the probability of (5.3)

is a min-max value for C=1. Substitute z=(l+C)w in (5.3) and

14



differentiate with respect to C. Denoting the derivative by a
prime, one obtains the right-hand side of (5.3) as
(2/7) [G” (2/1+C) G(Cz/1+C) (-z/(1+C)?) sin az dz
0 z

+ (2/7) [G(2/1+C)G” (Cz/1+C) (z/(1+C) 2) sin az dz,
0 z

which is zero for C=1. Although it is not possible to show that
this is the only zero for a general G(w) transform, it is the only
zero when G(w) is an exponential transform family function. One
may heuristically use the C=1 min-max point for the worst (or
best) case in classifying G(w).

As a final consideration of this section, the heuristic
procedure is generalized.
Theorem 4 - Let Gj (w) be any N non-negative transforms of pdf's
gj (u) respectively. If g;(u) are each élassified_by the
heuristic as SLC, then the N-fold convolution of the gi(u) will
be classified by the heuristic procedure as SLC.

Conversely, if g;(u) are each classified as not SLC, then
the N-fold convolution of g (u) will be classified as not SLC.
Theorem 4 indicates that for a summation of N RV's each having
SLC pdf's, the pdf of the sum will also be SLC. For pdf's satisfy-
ing the Central Limit Theorem [6], this result is expected since
the pdf of the sum approaches a Normal pdf as N increases.
However, Theorem 4 goes further by handling pdf's with unbounded

variances (Theorem 4 is proved in Appendix D).
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6. CONCLUSIONS AND AN EXAMPLE

The BA, defined in this paper, provides a simple means of
obtaining a TI for a linear sum of independent RV's in terms of
the TI's of the summed RV's. The condition of linear conformity
was defined as the situation wherein the CTI of the BA was a
conservative TI, for a given CL.

The investigation of conditions leading to a conservative
bound on the linear sum has been limited to the case where the
pdf's of the summed RV's are of the same general form. The
heuristic procedure for analyzing arbitrary pdf's was limited to
determining the condition of SLC pdf's. It is the conjecture of
the authors that if each of several pdf's are SLC, then the
linear combination of RV's having these pdf's is LC. This
conjecture has not yielded to direcé verification by the authors,
although experience with many pdf's seems to ind}cate the validty
of this hypothesis.

When some of the RV's combined in a linear sum are mono-
tonically dependent, the CTI can be shown to be conservative [2].
When the RV's are linearly dependent, then the CTI is no longer
conservative, but rather an exact computation of the TI for the
linear sum. One concludes that the assumption of statistical
independence made in this paper results in a conservative analysis.
Statistical dependence does not, therefore, invalidate the
results obtained.

The exponential transform family was defined. This family

of functions was shown to be partitioned into two classes with

16



respect to the property of linear conformity. By comparing other
functions to members of the family, one may deduce whether the
compared functions exhibit the property of linear conformity. The
exponential transform family contains the delta, Cauchy, and
Normal pdf's, and is therefore important in its own right.
Finally, a heuristic method was developed which enables the
classification of a much larger number of functions by a simple
graphical analysis.

For some G(w) functions, the heuristic is indeterminate
under conditions previously discussed. Even when such an in-
determinacy exists, there is some maximum wy (and therefore some
minimum "a") for which the heuristic is determinate. In order to
illustrate the application of the Qeuristic for the indeterminate
case, the following example is giveﬁ.

Consider the transform pair

.234exp (-9 |u|)+.12(exp(-|u-.81|)+exp(-|u+.81]))

“*.4212/(w?+.81) + .48 cos (8w)/(w2+1) (6+1)
The pdf given in (6.1) is a continuous approximation to the discrete
example of Table 1. Figure 2 illustrates the heuristic method
applied to (6.1). " Note that a semi-log plot was used, so that
the standard function of the heuristic is a straight line drawn
from the point (1,0) through the G(w) curve. The intersection of
this standard curve results in determining for w/2a<.24. That is,
for an intersection at m/2a, no other intersection occurs for
w<m/a. The minimum value of the tolerance limit "a" is therefore

anin="/-48=6.545, G(w), given in (6.1), is SLC for a>6.545.

17



To c?mpare the heuristic result with an analytic analysis,
one must determine when

(1/m) [ G(w)sin wa dw<(1l/m) [ G2(w)sin 2wa duw (6.2)

-0 _"——w - 00 ""'_—'———'w ‘.

is true. Using complex integration and numerical analysis, one
may show that the inequality of (6.2) is satisfied for a > 3.6047
(the analysis is lengthy and is therefore omitted here). To
determine how conservative the heuristic result is, one may
compute the probabilities which correspond to ad and danalytic™
3.6047. Using (2.2) with g(u) given by (6.1) yields

p{IX[iamin}:.575, and p{|X|§aanalytic=_503.
The heuristic method has resulted in a slightly conservative
estimate of the actual CL for which the BA provides a conservative

\
TI.

As a final note of this paper, it is not tgqbe assumed that
G(w) need be non-negative for the heuristic to work. Indeed the
transform of the rectangular distribution is of the form
pT(u)++sian/wT, where the pdf is centered about the u origin, and
has width 2T. This pdf can be shown to be SLC. The heuristic
method determines that pT(u) is SLC, with no indeterminate region.
APPENDIX A. PROOF OF THEOREM 2

Consider an inductive proof. For the N=2 case, it is assumed

that, from (4.2)

(l/n)i exp(—@lIwkl)sinwaldw/w=(1/n)£ exp(—@zlwkl)sinwazdw/w.

(A.1)

18



Substltutlng a Z= a w and multiplying through by 7, one obtains

f exp (-0 lw |51nma dw/w

o

==[wexp(-ez(al/az)klzklsinZale/Z (A.2)

(A.2) implies that 92=Ol/(a1/a2)k. Consider the pdf transform for
RV Y = C1X1+C2X From the Convolution Theorem [7], one may

write the transform of gy(u), the pdf of Y, as
. = . k_ k
gy(u)++G1(Clw) G, (C w)=exp( Oll[clw) | 62|(C2w) D)
_ B k k k
=exp ( (olc1 e c, Jlw™ ). (A.3)

Using the above expression for 62, (A.3) becomes

edaestcm Ty Kape K Ky Kiv_oo o Kk
gy(u) exp ( 91(C1 +C, (az/al)_glw |)=exp ( o Y [w™]) (A.4)

k ‘
where Yk=Clk+(C2a2/a1) . Using (3.7), the probability of the

CTI is
p{|Y|<a Cc +a € }=(1/m)[ exp(-0 v |w"|)sin((C a +C a )w)duw/w.
=T33 2 2 oo 1 1 2 2
Substituting v=yw, the last equation becomes

p{|Y|5a1C1+a2C2}=(1/n)£:exp(—01IVkI)sin((C1a1+C2a2)v/y]dv/v
(A.5)
From (3.7) and the properties of a pdf, the integral of (A.5)
increases monotonically with the constant (C1a1+C2a2)/Y. The
right-hand side of (A.5) has the same form of the integrals in
(A.1). Therefore, the proof is concerned with determining the

conditions such that
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(C a +C a )/y>a . ' (A.6)

11 2 2 -1
Substituting the definition of y and a2=(O /(91)1/k a from the
2 1

expression of 92, (A.6) becomes after some algebraic manipulation

1 k
) /

1/k:
a1(1+(C2/C1)(Oz/Gl) )/(1+(c2/c1) (0,70 ) >a . (A.7)

The constants in (A.7) are all non-negative, so the inequality can

be written, after raising both sides to the kth power as,

K
(1+(c sc )% 0 ) " 51400 /e ) (0 /0 ). (A.8)
2 1 2 1 = 2 1 2 1

Let Ck=(C2/Cl)k(92/@l)- Thus (A.8) is (l+;)kil+ck. Since ¢
is a non-negative constant, it is clear that the inequality is
satisfied when k>1. This proves tﬁe N=2 case for the proof.

The inductive step assumes thq\N—case holds. That is, it is

assumed that
AN

N
p{lz _;Ci l|<zi Cja. }>a. (A.9)
The N+1 case is concerned with the linear combination

N
X.= X, + X =X+C X . A.10
i=1clxl zi=1clxl CN+1 N+1 . N+1 N+1 i )

v-]

The transform of the pdf for X is again that of the individual

X; pdf form, and can be written as exp(—@lwkl). Define the
constants ;=ZF lCiai. By the assumption that the N-case holds,
1=

p{|X|<al>a, if k>1

<o, if k<1.
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. 3 r\l ¢
It is clear that there exists another constant, a, such that
p{|X|<3}=a. Then

d<a, if k>1

X>a, if k<l.

(A.10) corresponds to the N=2 case. From the first part of the

proof, it follows that

p{|Y|§g+aN+lCN+l >a, k>1

<a, k<1.
But
N ~ N+1
a+aN+lcN+lia+aN+1CN+l_Zi=lciai' k>1
> , k<1.

Therefore, it follows that %

p{|Y|i$+aN+1CN+l}zp{|Yl§g+aN+lCN+i}ig, k>1 X
< <a, k<1.
Therefore, the N+1 case holds. That is, the N+l collection of
pdf's of the N+1 RV's is SLC if and only if k>1. QED
APPENDIX B. OUTLINE OF THEOREM 3 PROOF

The proof of Theorem 3 parallels the proof of Appendix A.
One uses the expression (afci+a:Cz);5 in place of (a1C1+a2C2).
The condition to be determined now is when (Ciaf+ciaz)%/yial
is true. By similar algebraic manipulations and the definition
Ck=(C2/C1)k(02/Ol), the above inequality becomes a1(1+c2)%/(l+ck)l/k
Zal. Analysis of this inequality will reveal that the sense of
the inequality holds if and only if k>2. The inductive step also

parallels that of Appendix A.
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APPENDIX C. DEVELOPMENT OF THE HEURISTIC CLASSIFICATION METHOD
The heuristic method is concerned with determining when
(l/ﬂ)iZGz(w)sin(2wa)dw/wz(l/ﬂ)£:G(w)sin(wa)dw/w (C.1)

is true for the function G(w). Several approximations are made
in the following analysis. The first approximation is that only
the first half-period of the sinc function (that is, the function
sinwa/w) is considered. This approximation is based on the fact
that the sinc function falls off as 1/w and that the magnitude of
G(w) decreases monotonically for many pdf transforms.

A second approximation is that sin2wa/w and sinwa/w are each
replaced by a rectangular function having the same area under them
as the original functions and with width equal to the correspond-
ing half—period; It is noted that this second approximation is
exact for G(w)=exp(-0|w| \

Incorporating the two approximations and dibiding out constants,

one obtains the approximated representation of (C.l) for symmetric

G(w), as

m/2a
/ 4 Gz(w)dwz(l/Z)fﬂ/aG(w)dw (C.2)
(0] )

The analysis considers the two classes of G(w) represented in
Figure 1. It is to be shown that Figure 1l-a corresponds to the
invalidity of (C.2), while Figure 1-b corresponds to the inequality
being true. For each of these two classes, two cases are considered.
The first case is when G(m/2a)>.25, and the second is when

G(m/2a)<.25.
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Consider the G(n/2a)i.25 case for both classes, shown in
Figure 1. At some wr such that G(wy)>.25, construct a standard
function, F(w)=exp(-0|w|) such that it intersects G(w) at Wy
Define

Aw)=G(w)-F (w) . (C.3)

The intersection point is to correspond to 7m/2a. Substituting

(C.3) in (C.2), one obtains

2 ?
f“/ a(F(w)+A(w))2dwi(1/2)fz/a(F(w)+A(w))dw (C.4)
o

where the direction of the inequality is yet unknown. One easily

shows that

m/2
fo

®F2 (1) dw =(1/2)f2/aF(w)dw. (c.5)

Expanding (C.4) and subtracting (C.5), -one obtains

~
2
jn/A?w)(A(w)+2F(w))dw§(1/2)f"/f?w)dw+(1/z)j"/%(w)dw, or
© o m/2a
2 ?
jZ/A?w)(A(w)+2F(w)-%)dw-(1/2)f"/i(w)dwio. (C.6)

m/2a
Since G(w) and F(w) are at least .25 in 0O<w<w/2a,
G(w)+F(w)=-1/2>0, O<w<m/2a.
In Figure l-a, A(w)<0 for 0<w<rn/2a, and A(w)>0 for m/2a<w<w/a.
In this situation, both integrals of (C.6) are non-positive.
Therefore the inequality is not satisfied. G(w) is not SLC.

Now consider Figure 1l-b and (C.6). Here A(w)>0 for
O<w<m/a, and A(w)<0 for m/2a<w<w/a. Both integrals of (C.6) are

non-negative, and G(w) is SLC.
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The case where G(m/2a)<.25 is now considered. F(w) is
now constructed so that it intersects G(w) at G(wy)=.25 (if G(w)=
.25 at more than one point, Wy is the smallest value of correspond-

ing to G(w)=.25). (C.4) is now written, using (C.3), as

f“k(p(w)+A(w))2dw+fz/2a(F(w)+A(m))2dw§(1/2)jz/a(p(w)+a(w)]dw.

° | i (C.7)
Subtracting (C.5), bringing all terms on the left-hand side, and
using (C.3), one obtains

jzkA(w)(F(w)+c(w)-(1/2))dw+f:/aA(w)(F(w)+c(w)-(1/2)dw
2

-(1/2)fﬂ/a(A(@))dw§0. (C.8)
T/2a i
Since F(w) and G(w) are at least .25 for wiw%, and less than
.25 for w%<win/2a,
F(w)+G(w)—(l/2)_>_0, wiw;z

<0, wkimin/Za.
In Figure 1l-a, A(w)<0 for wiw% and A(w)>0 for wiw%. The three
integrals of (C.8) are non-positive. Therefore, the inequality
is not satisfied. G(w) is not SLC.

Now consider Figure 1-b and (C.8). Here A(w)>0 for wip%
and A(w)<0 for wzw%. The three integrals are non-negative,
satisfying the inequality. G(w) is therefore SIC.

As a final note, one realizes that the above analysis is con-

servative. This is true since the integrands of (C.6) and (C.8) were
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required to be either non-negative or non-positive throughout the
range of integration. This requirement is clearly a worst-case
situation.
APPENDIX D. PROOF OF THEOREM, 4

Let the pdf's g (u) be each classified SLC by the heuristic,
and let their transforms be denoted G; (w). Then at any w, say
wy, there exists standard functions F;j (w) such that

Fi(wI)=exp(-Oi|wI|)=Gi(wI).
By assuming gj (u) are classified as SLC, it follows that

G; (w)>exp (-0, [w]|) for wiwy, and Gj (w)<exp(-0;|w|) for w>wy. But

N N
N
I Gj(w)=T exp(—OilwII)=exp(—2i=lOinI|) (D.1)
i=1 i=1
and
s
N N
IiI=lGi(w)_>_exp(—Zi=leilw|), W<w -
< r W07, (D.2)
One recognizes (D.1l) and (D.2) as the criteria used by the heuristic
N
to classify a pdf with transform I G; (w) , where the standard
i=1 N
function has parameter O,= ©;. Since II _G; (w) is the transform.
P + Zi=1 = i=1 1

of the N-fold convolution of the N pdf's gi(u), it is clear that
the heuristic classifies the N-fold convolution as SLC.
The converse is proven by reversing the sense of the

inequalities in the first part of the proof. QED
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1. HEURISTIC CLASSIFICATION OF AN
ARBITRARY TRANSFORM G ()2

F(w) (a)

G(w) ‘\\\\\\\“‘---—___

wI=n/2a m/a

%F(w) is a standard function exp(-0|w|) where ©
is chosen so that the intersection of the two
curves occurs at w_.=m/2a. In (a), G(w) is not
self-linearly conformal. 1In (b), G(w) is self-
linearly conformal.



.08

.06

.04

.03

«02

G(w)=.4212/ (w?+.81)

2. EXAMPLE APPLICATION OF THE HEURISTIC .
CLASSIFICATION METHOD TO CONDITIONALLY,
LINEAR CONFORMAL PROBABILITY DISTRIBUTION

b

F(w)=exp(-0]|w]|)

+.48cos (8w) / (w?+1)

bNOTE: The ordinate scale is logarithmic._ The .
standard function F(w) is therefore a straight line.
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