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ABSTRACT

This thesis is concerned with the determination of
interpolation and extrapolation procedures for automated
testing systems. The principle motive for considering such
research is that of reducing the number of measurements
required to characterize a particular device function. The
approach taken is to use prior test data from similar com-
ponents of a device type. This information is incorporated
into the interpolation or extrapolation procedures either
in the form of tolerance intervals (TI's) replacing deter-
ministic data, or else is used to adapt the procedure to
the deterministic measurements made on the device being
tested.

The type of device functions considered in the thesis
are restricted to a continuous, nonlinear, instantaneous

category. A further restriction is that certain derivatives
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of the functions must also be continuous. Some situations
allow the relaxation of the instantaneous requirement.

The interpolation formulas are seen to represent linear
combinations of random variables (RV's). A basic problem
arises concerning the need to combine TI's of the RV's.

A "bounding algorithm" (BA) is presented which avoids the
analytic convolution and which forms a statistical bound
directly from the individual RV TI's. A property called
"linear conformity" is introduced in order to define a ...
measure of how conservative this composite bound is. An
investigation using the Fourier transform examines con-
ditions under which linear conformity exists. The analysis
assumes that the combined RV's are statistically independent.
Several theorems are developed which consider the effect of
this assumption on the bounds formed when RV's are
dependent.

A family of probability density functions (pdf's)
called the "exponential transform family" is described.
Several theorems are proved regarding the BA bounds on a
linear combination of RV's having these pdf's. A heuristic
classification procedure is developed which enables one to
establish the linear conformity property for arbitrary pdf
transforms under certain conditions.

In a second approach, prior measurements of devices are

organized as patterns of information. The patterns are used
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to determine the coefficients of an iterative extrapolation
formula via a training procedure. The resulting extrapolator
is at least as accurate or better than corresponding con-
ventional extrapolators, if the set of training patterns

is representative of the functions to be subsequently
extrapolated. Convergence of the training procedure is

proven for consistent training patterns.



1. INTRODUCTION

With the rapid transition from discrete to monolithic
circuits, the problem of testing devices! is becoming severe-
ly difficult for manufacturers and users of these devices.
A significant percentage of these devices must be tested? in
a continuous, nonlinear, instantaneous mode. While circuit
probing has been a dominant testing technique for discrete
circuits, it is obviously unfeasible for testing integrated
circuits (IC's) because of the extremely small size of
circuit elements. One is thus faced with testing a highly
complex black box device through terminal excitations and
measurements. Excitations may also involve environmental
variables such as temperature and humidity. Static testing
of a few combinations of inputs cannot be expected to suffice
for situations where the functional behavior of the device
is critical. It may not be easy to simulate the exact sys-
tem environment that the device will be subjected to or this
‘environment may vary over a wide range of conditions. Non-

electrical inputs such as temperature and other mechanical

'The word "device" is intended to mean a physical system
that is not readily divisible into constituent parts due to
the way it is manufactured. Such devices can be very com-
plex systems. Although the devices referred to in this
thesis are that of monolithic integrated circuits, it will
be seen that mechanical and chemical systems could also have
been considered.

’The word "test" is intended to mean the determination of
a measurable response of the device to an excitation.



stresses may cause significant functional variations which
must be known for design.

In order to economically test continuous IC's, auto-
mated testing systems have become a necessity. Fortunately,
the increased complexity of monolithic devices which has
compounded the testing problem has also established the po-
tential for a solution. Large scale integration of digital
electronic circuits has allowed data processing equipment to
shrink both in size and price. But while the cost of making
measurements decreases, the number of measurements per device
required to adequately test continuous devices increases.

It is clear that exhaustive discrete measurements of a
continuous, nonlinear device's input-output function is not
possible since an infinite number of input values exist even
for a scalar input. In order to characterize this function,
it is necessary to interpolate or extrapolate the measure-
ments that are made. Also, one may be restricted in the
range of the input variable that can be generated for the
testing of the device. Sometimes this restriction comes
about because the device is altered or destroyed by subject-
ing it to excessive voltages, currents, or temperatures.
Frequently it is desirable to be able to test devices in the
field using a testing system much simpler than that available
in the laboratory. Another important limitation in simulat-
ing input values occurs in life and storage testing. Here,

one would like to extrapolate in time to predict the



behavior of the particular device based on what has been
observed in the past.

This theoretical thesis is concerned with the application
of interpolation and extrapolation procedures to automated
testing systems. An automated testing system is often re-
quired to make decisions as to the reliability of the device
in its planned mode of operation, based on sample measure-
ments. The principle problem to be considered is that of
reducing the number of measurements required to characterize
a particular device through the use of interpolation and
extrapolation algorithms. A primary aspect of the approach
taken is to use prior test data from similar components of a
device type. This information will be incorporated into the
interpolation or extrapolation procedures either as statis-
tical data, or will be used to adapt the procedure itself to
the deterministic measurements made on the device being
tested.

It must be stressed from the beginning that the ap-
proaches considered will always require an initial concerted
measurement effort. In gathering data to be organized as
statistical estimates or to be used in training procedures,
for the approaches in the thesis, one must be prepared to
measure many components of a device type and measure each
component's characteristics much more extensively than would
be required just to determine the reliability of these

components. The savings of such information gathering



programs can be realized when hundreds of thousands of com-
ponents of the same device type are manufactured and are
subsequently tested using this a priori information. Addi-
tional savings accrue when one is also able to simplify the
automated testor used by the vendors and purchasers of
devices. Simplified field testing can also be important
when testing must be performed by personnel under critical
military or aerospace situations.

The type of input-output function considered in this
thesis will be restricted to a single-valued, continuous,
nonlinear, instantaneous function. This device function may
be further restricted in that sometimes the derivatives of
the function may also be required to be continuous. When
this additional restriction is required, a statement to this
fact will be made.

The requirement that the device function be instanta-
neous is of major consequence. By requiring that the output
be independent of past inputs, there are many interesting
devices that must be excluded. Some of these include mag-
netic memory devices which are often characterized by hys-
teresis curves. It is stressed that the reason for exclud-
ing such behavior as hysteresis is that such effects add an
additional level of complexity to the already difficult
study of automated testing. It is expected that the tech-
niques to be developed in this thesis can be extended to

dynamic input-output functions, but that such an extension



must be deferred as a future area of research. In some
specific applications, one may be able to transform a dynam-
ic response function into an instantaneous function. As an
example, one may measure a particular characteristic of a
hysteresis loop as a function of temperature. This charac-
teristic is measured once per cycle, and may be an instanta-
neous function of the temperature.

As a final consideration of the requirement that the
device function be instantaneous, it is noted that time may
be considered an input. When one considers the long term
storage effects on devices, for example, time becomes the
principle independent variable in the device function. It
will be assumed, however, that the effects of time will only
be important over periods many orders of magnitude greater
than the time required to make a single measurement on a
device.

In describing the particular problem area considered in
this thesis and the new results obtained, it is appropriate
to indicate the organization of the thesis and the content
of each of the chapters. 1In the following chapter, several
segments of the literature will be reviewed which relate to
those areas specifically considered within developments of
the thesis, and to the general problem of device testing.

It is the dual purpose of this review to acquaint the reader
with a general background to the problem of automated testing

of continuous, instantaneous, nonlinear devices, and also to



indicate the alternative approaches considered by the author.
A part of the chapter is concerned with establishing the
importance of the principle problem area considered in the
thesis. This area concerns the economic limitation on the
number of measurements that can be made on a device. Spe-
cifically, one wants to minimize the number of measurements
made on a given device that is required to characterize

this device.

The literature review considers the various existing
techniques of characterizing the performance of a device.
Each of the areas reviewed are discussed with respect to
their relevance to device testing. A conclusion made is
that conventional extrapolation and interpolation tech-
niques possess desirable features for automated testing, but
that they suffer from an important deficiency. This defi-
ciency concerns the failure of the conventional techniques
in utilizing information on prior devices tested. In order
to overcome this deficiency, two general approaches are
suggested. One approach uses conventional interpolation
formulas and prior information organized as statistical
distributions. Tolerance limits obtained using the distri-
butions are substituted for data normally obtained by direct
measurement of the device under test. The second general
approach is to use prior information to obtain extrapola-
tion procedures adapted to the device function to be approx-

imated. A training procedure is suggested which evolves from



considerations of pattern recognition theory. The adaptive
extrapolation techniques are particularly useful for the
problem of long term reliability prediction for devices.
This application area is reviewed in order to determine
alternative approaches that exist in the literature.

Comparison between the new results in the thesis and
existing methods are explained in more detail throughout
the thesis. When a parallel approach exists to a develop-
ment in a chapter, the differences and similarities will be
pointed out to the reader.

The third chapter is devoted to preliminary consider-
ations of the problem of combining prior information with
measurements made on a particular device. The material in
this chapter provides the reader with a background to the
initial approaches considered by the author. The chapter
contains three different topics which represent potential
starting points for later results. The first topic is con-
cerned with fundamental techniques which combine determin-
istic device function measurements with "statistical data."
Because measurements can represent statistical estimates of
physical quantities rather than the quantities themselves,
it is necessary to define what is meant by the term statis-
tical data. If a great number of similar devices are
measured at the same input conditions, these measurements
may be organized as a distribution of a statistical quantity.

This quantity is the device function evaluated at the



particular input conditions for which the measurements were
obtained. 1In this thesis, the term "statistical data" will
always mean the value or the range of values of the device
function obtained from a statistical distribution. The term
"deterministic data" will always mean the value obtained by
direct measurement made on a particular device.

The results of the initial topic is that interpolation
and extrapolation procedures are developed which combine
deterministic measurements of a device function with statis-
tical data which is in the form of bounds on the device
function first derivative. Rather than determining an
approximation to the device function, statistical bounds
are obtained between which the device function is said to
lie with a particular probability. This approach is not a
polynomial approximation and therefore assumes no particular
order of approximation. The limitations, assumptions, and
possible practical applications are discussed.

This preliminary topic introduces a basic problem.

The problem concerns the need to linearly combine tolerance
limits of random variables. By assuming that the random
variables are independent in the statistical sense, the
complexity of the combination problem is reduced. However,
there still is a need to simplify the process in which the
bounds on the random variables can be combined. A partic-
ular combining algorithm is described which was used in the

preliminary topic described above. The second topic of the



chapter considers alternative algorithms with respect to
their suitability for the statistical interpolation tech-
niques first discussed. Justification for the algorithm
used is deferred until the fourth chapter, since an exten-
sive mathematical analysis must be developed.

The last topic of the third chapter concerns a special
aspect of device testing. The problem relates to the need
to determine the variations of process parameter effects
over the area of a monolithic circuit. Due to the extremely
small size of the circuit elements and interconnections, it
is economically unfeasible to make parametric measurements
at points other than those specifically designed for this
purpose. With the increasing amount of integration in these
monolithic circuits, it becomes increasingly more unlikely
that a few test points can satisfactorily represent the
process parameter effects over the entire circuit. The
approach taken is to combine prior statistical distributions
of spatial variations with the few measurements that can be
made on these circuits. Conventional Bayesian analysis
techniques are employed. The novelty of the approach is in
the way that the prior statistics are gathered. A "test
wafer" is described which enables a distribution of parameter
variations to be obtained. While this last topic is some-
what different from the remaining developments of the thesis,
it is included because of its extreme importance in the test-

ing of integrated circuits. It is also noted that the topic



addresses the principle problem studied in this thesis. It
enables a reduction in the number of deterministic measure-
ments that.must be made on a particular device to satisfac-
torily characterize it.

The fourth chapter is devoted to obtaining bounds on
linear combinations of independent random variables. The
need for these bounds has already been indicated in the dis-
cussion of the earlier chapter on preliminary results.
Further need for this analysis results whenever several
deterministic data are replaced with statistical data in
the form of tolerance limits. The first part of the chapter
formalizes the algorithm which is used to combine the sta-
tistical data bounds for individual random variables into
composite bounds. The algorithm provides a simple means of
obtaining a bounds on the linear sum of random variables.
It is assumed that the individual random variables are
statistically independent.! Following this definition, a
detailed mathematical analysis is performed in which the
effect of combining several similarly distributed random
variables is investigated. Fourier analysis is the vehicle
for this analysis. Several theorems are stated and proven
which relate to properties of the distribution which corre-

sponds to linear sums of the random variables. The major

'In Chapter 3, it is shown that a conservative analysis
will usually result, when the random variables are assumed
statistically independent when, in fact, they are dependent.

10



result of the chapter is the determination of several con-
ditions on the distributions of the individual random var-
iables which allow the use of the bounding algorithm. Under
these conditions, the probability corresponding to the tol-
erance limits of the individual random variables also corre-
sponds to the tolerance limits obtained using the bounding
algorithm, as a conservative approximation. That is, the
probability for the composite bounds is at least that corre-
sponding to the individual random variable tolerance limits.
A family of distributions is shown to allow such a combina-
tion of tolerance limits. Several heuristic procedures are
developed which are useful in considering arbitrary prob-
ability distributions with respect to use of the bounding
algorithm. The advantages and limitations of the results of
this chapter are discussed with respect to practical consid-
erations.

Following this analysis, Chapter 5 contains techniques
which allow the incorporation of statistical data in poly-
nomial and transcendental curve fitting. The conventional
techniques of exact-fit interpolation and extrapolation
possess certain desirable properties. These properties are
that the techniques are easily mechanized by simple auto-
mated testing systems, and that there exists a great deal
of theory related to practical application of these tech-
niques. Conventional exact-fit approximations do not

normally utilize any information other than deterministic

11



data. This chapter treats the situation wherein statistical
data is substituted for deterministic data. A consequence
of this incorporation of statistical data is the reduction
in the required number of measurements on a device that can
characterize the device function. The statistical data that
is substituted is in the form of tolerance limits and corre-
sponds to a tolerance level or probability. The use of this
statistical data results in a statistical bounding of the
device function with a corresponding tolerance level. The

general approach taken in this chapter is seen to follow

from the third chapter concerning preliminary considerations.

The assumptions made in Chapter 5 are examined with respect
to situations in which they can be expected to be physically
valid. Practical applications of the techniques developed
in the chapter are also discussed.

In Chapter 6, an alternative approach to combining
prior information with deterministic measurements is taken.
This approach evolves from a particular class of testing
problem, long term reliability prediction. This problem is
seen to be an extrapolation problem in which one must use
device measurements usually gathered at regular intervals
of time, to approximate the device function behavior at
some future point in time.

Conventional extrapolation formulas are usually insen-
sitive to the type of function being approximated. While

the type of function governs the order of the approximation

1.2
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used, the coefficients that multiply the data are determined
independently of the data values. 1In this chapter a differ-
ent approach is taken. The data are considered to represent
patterns of information. By using patterns obtained via
measurements on many devices, the extrapolation coefficients
are determined with a training procedure. This adaptive
process results in an extrapolation formula which is more
accurate for the patterns of data used to obtain it. If
this so-called "training set" is representative of the device
under test, the extrapolator is seen to be more accurate
than conventional techniques.

The techniques of this chapter are obtained utilizing
pattern recognition theory as their vehicle. Other attempts
to apply pattern recognition theory to the problem of long
term reliability prediction are compared to the results of
this chapter.

Chapter 6 also considers the implementation of the
adaptive extrapolation techniques. A simulator is described
which performs iterative extrapolation of a device function.
Given an initial sequence of N consecutive values of the
device function, the simulator computes subsequent values of
the function corresponding to regular time intervals. A
second system is used in conjunction with the simulator.
This second system, called a recognizer, determines when
the simulated output of the simulator corresponds to a pre-

defined failure mode. Several approaches to the design of
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the recognizer are discussed. It will be seen that the
design follows from existing pattern recognition techniques.

An important feature of the adaptive extrapolation is
that it is immediately extended to multidimensional functions.
Conventional extrapolation suffers when more than one dimen-
sional functions are considered because of the rapidlw grow-
ing algorithm complexity. The adaptive extrapolator is
shown to avoid some of the pitfélls of existing methods.

The concluding chapter of the thesis summarizes recom-
mendations for further research. As a final note of this
introductory chapter, it is pointed out that although the
primary area of application is that of testing monolithic
electronic devices, the results of this thesis apply to
other types of systems as well. From time to time, reference
will be made to IC's in the development of testing pro-

cedures, but it should be clear that mechanical and chemical

systems could also have been considered.
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2. LITERATURE REVIEW

2.1 Chapter Introduction This thesis is concerned with

the theory for applying interpolation and extrapolation
procedures to automated testing systems. The reason for
considering this problem is to reduce the number of measure-
ments required to characterize a particular device through
the use of interpolation and extrapolation algorithms. A
primary aspect of the approach taken is to use prior test
data from similar components of a device type. Such infor-
mation is incorporated into the interpolation or extrapo-
lation procedures either as statistical data,! or it is
used to adapt an algorithm to the deterministic measure-
ments made on the device being tested. Initially, a review
of literature directly related to the thesis problem area
is made. Included in this review are papers that contain
results directly applicable to developments in the thesis.
Existing methods for characterizing a device function are
reviewed in order to indicate the need for the new ap-
proaches taken in later chapters.

The succeeding section reviews several topics that are
expected to provide the reader with a background useful in

understanding the thesis developments, although these topics

'In this thesis, the term "statistical data" means the
value or range of values of the device function obtained
from a statistical distribution.



are not directly relevant to the thesis problem area. That

is, these topics do not directly apply to interpolation and

extrapolation.

The final section expounds on the conclusion that the
reviewed literature fails to cite the use of prior infor-
mation for interpolation and extrapolation. 1In order to

overcome this deficiency, two general approaches are sug-

16

gested in the section. The developments of these approaches

represent the major work undertaken in the thesis.

2.2 Review of Literature Related to the Thesis Problem Area

In this section, literature is reviewed which directly

relates to developments in later chapters. The relation-
ships between these topics and the thesis area of investi-
gation are also explained.

Since one concern of this thesis is with the incorpo-
ration of statistical information for automated testing
system interpolation and extrapolation procedures, it is
useful to begin the section with the consideration of how
statistics are usually employed in automated testing. A
review of texts on engineering statistics such as Bowker
and Lieberman [1964], Guttman and Wilks [1967], and Mood
and Graybill [1963] reveals that research in production
testing techniques has traditionally been concentrated in
the area of sampling statistics. Sampling statistics is

concerned with limiting the number of devices or objects
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inspected that is required to characterize the entire pop-
ulation from which the sample devices are drawn. In con-
trast, the problem considered in this thesis is primarily
concerned with limiting the number of measurements required
to characterize the performance of a particular device.
One may conclude from this comparison that the area of
sampling statistics is of limited use in the proposed area
of investigation. The techniques of sampling statistics
are more directly relevant to the means of obtaining
statistics required as a priori information for the thesis
developments. The only direct application of sampling con-
cepts made in the thesis corresponds to the special prob-
lem in the next chapter. This special problem can be
thought of as a sampling problem in that measurements are
made at the sub-device level.

The developments of this thesis share a common feature
in that they combine deterministic measurements on a
particular device with statistical information gathered for
devices of the same device type. A branch of statistical
methods which is concerned with such a combination is
called Bayesian analysis (Morgan [1968]). Several formu-
lations, using Bayes' rule, as a basis, can be made. For
example, a parameter 0 of a probability distribution for
observing some physical quantity may be unknown, but one

may have some information about the approximate probability



18

that 6 equals 6, (i=1l,...n). Call this probability Pe(ei).

1
Then for a given value of probability distribution
parameter 0, one may compute the probability of observing
a particular value Yo of the physical quantity, if all
other information about its probability distribution is
known. Since this probability is actually conditional with
respect to the value of ei used, one has the conditional
probability

Py]e(yolei)'
Then by Bayes' rule,

P (yn]0.)-P,(6.)
_ yle'to!'"i 6\ 1
)P

=1 Yle

(yolej)

where PGIy (ei yo) is the conditional probability that the
parameter value was Gi given an observation of y equal to
Yo- The left-hand side of the above equation represents a
posterior probability resulting from combining the infor-
mation about an observation with the prior probability
distribution of 6. Generally Bayesian analysis allows
revision of a prior probability distribution. Morgan [1968]
develops Bayesian analysis for application to decision pro-
cesses in which the value of information is incorporated.
In a paper by Sage [1969], Bayesian analysis is applied to
estimation of parameters of a linear systems model when a

measurement error exists. This error is assumed Gaussian.
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It is shown that the Bayesian estimate of the parameters
have a smaller error variance than that of a least squares
estimate. Tsokos [1972] uses Bayesian analysis to determine
a posterior distribution of a Weibull failure model in
which both the shape and scale factors of the distribution
must be estimated. This procedure is used to determine a
failure model of a specific device.

Bayesian analysis is thus useful in obtaining improved
approximations to a probability distribution associated
with some population attribute. It may also be used in a
situation analogous to parameter estimations of a device
model. Breipohl [1969] presents a tutorial treatment of
Bayes rule and how it can be used to develop the well-known
Kalman filter which is typically used to recursively
estimate the state vectors of a control system. This appli-
cation of Bayesian analysis is suggestive of a more general
area of investigation. One may be concerned with the effect
of new observations of an event, such as a system's response,
on one's prior information related to the occurrence of
this event. Bayesian analysis deals specifically with the
effect of events on prior probability distributions (Jaynes
[1968]). The effect in this case is the revision of the
probability distribution. Bayesian analysis is directly
applied to the special problem considered in the next chap-

ter. The other developments of the thesis represent



alternative approaches to Bayesian analysis in their treat-
ment of the more general methods of combining statistical
and deterministic information.

Since an important application of the thesis develop-
ments is the automated testing of devices to determine if
particular devices are acceptable or have failed, it is
appropriate to briefly consider fault detection in continu-
ous devices. When the devices are circuits, one may use
standard sensitivity analysis1 and knowledge of the circuit
topology, to determine the effect of circuit element varia-
tions on the circuit response when a series of "standard"
inputs are applied to the circuit. The problem then is to
determine a minimum sequence of tests comprised of combina-
tions of the standard inputs which will detect failures of
circuit elements. One is reminded that the failures for
continuous circuits are generally non-catastrophic. That
is, an element failure is a parametric drift beyond some
allowable limits. Thus fault detection can be viewed as an
inverse mapping of sensitivity analysis. Investigations
along these lines have been limited. Seshu and Wasman
[1966] used circuit topology and nominal values to obtain

tests on linear circuits using frequency domain techniques.

!See Herskowitz [1968] for examples of sensitivity
analysis by computer.

20
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They recognized that the pole and zero locations of a trans-
fer function and the gain factor must be affected by circuit
parameters if these parameters are to affect the performance
of the system. The circuit topology and nominal values of
the circuit elements enabled them to obtain a set of
"signatures" of parameter variation. This analysis enabled
them to obtain an input-output test sequence in which a
frequency response yielded a complete testing of the
circuit.

The above technique is only useful if the circuit is
linear and if the parameter variations give rise to differ-
ent changes in the transfer function. The second restric-
tion becomes increasingly more difficult to meet as the
size of the system grows. As the corner frequencies become
larger in number and closer together, the frequency re-
sponse must be obtained more and more accurately, requiring
more and more measurements to be made. A severe problem
with high density integrated circuits is that a large
system must be tested with a limited number of test points
and that distributed capacitance, inductance, and resis-
tance are not only unavoidable but sometimes are used to
the advantage of the design. Thus the above frequency
domain analysis suffers from the system complexity, non-
discreteness, and often nonlinearity. It might be added

that systems are rarely completely linear from the testing



22

standpoint since one must be concerned with the effect of
biases and gain levels (Grossman [1973]). Often this fact
is not considered in practical testing (McAleer [1971]).

A set of tests are performed at standard conditions and the
results are interpreted as being valid over a wide range of
environmental conditions that the device is expected to see.
This blind use of test results often proves unsatisfactory
in high reliability applications.

The literature appears to be lacking in other attempts
at fault detection in continuous circuits. The factors
which limited the signature approach of Seshu and Wasman
[1966] probably make a more general topological approach
unattainable. It is noted that interpolation and extrapo-
lation of device functions is an appropriate approach to
device characterization primarily when sub-device topolog-
ical analysis is unfeasible.

Since the thesis is concerned with automated testing
system interpolation and extrapolation procedures, an
important area of literature review is that of curve fitt-
ing techniques. This importance is realized when one con-
siders the usual motivation behind curve-fitting. The data
used in the curve-fit is usually assumed to correspond to
a deterministic function representing a physical process.
The curve-fit results in the determinatiocn of an approx-

imating function. From this determined function, one infers
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what the physical process, functional values are under
conditions different from those corresponding to the curve-
fit data. That is, the curve-fit enables one to interpo-
late between the data points.

With curve-fitting techniques, a standard functional
form may be used to approximate a device response function,
and the problem is that of determining the constants of
the functional form (Hamming [1962]). Normally, one uses
data obtained from direct measurement on the device in the
curve-fitting scheme. This data provides the information
that determines the function constants. One usually does
not think of the curve-fitting formulation as being depen-
dent on the data. Such considerations as whether to use an
exact-fit or a least squares fit, what order fit to use,
and whether a polynomial formulation is appropriate at all,
implicitly follow from known or expected properties of the
actual device function (Hamming [1962]). Additionally, the
presence of noise in the measurements is one of a number of
factors that influence the choice of the curve-fit techniques.

When the data used for a curve-fit contains a large
random measurement error, often referred to as "noise", it
is appropriate to determine a curve that will minimize the
effect of the noise while representing the data. Polynomial
curve-fitting techniques which minimize the sum of the

squares of the deviations of data from their estimate are



referred to as least squares approximations (Ralston
[1965]). There are other approaches that deal with random
error, but the ultimate choice centers on the question of
how well the approximation works in practice. In determin-
ing the order of the approximating polynomial, the criteria
of minimizing the least squares error is often used. It is
noted that this error represents the deviation of the
approximating function from the data, but this error does
not indicate the performance of the approximation between
data points. In choosing the order, Kussmaul [1969] shows
that when a measurement error of zero mean and fixed
variance exists, it is always better to use a higher rather
than a lower order polynomial approximation with respect to
the actual order.

While least square approximations are well suited to
noisy data, exact-fit approximations have distinct advan-
tages. Each fit polynomial approximations are easy to com-
pute for a number of reasons. Since the coefficients are
determined by closed-form equations, the inversion of
matrices normally required by least squares is avoided.
Hamming [1962] indicates that these matrices are often ill-
conditioned in that the determinant of the matrix is often
quite close to zero. Use of orthogonal functions may be a
means of avoiding this problem, but Hamming points out

that, "experience shows that if the orthogonalization is
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attempted by means of the Gram-Schmidt process, then the
same difficulty arises in a different disgquise."

Exact-fit approximations are particularly suited to
automatic testing systems when the positioning of the data
is predetermined (Hamming [1962]). 1In this case the coef-
ficients of the approximating polynomial can be precomputed
since they are independent of the data values. As Hamming
points out, the primary disadvantage of the exact-fit
polynomial is that as the order of the fit increases, the
polynomials become increasingly more oscillatory between /
data points. Since the primary purpose of the approximation
is to allow interpolation between data points, it is often
necessary to avoid high order polynomial curve-fitting.

The most simple way is to break up the total interval over
which the function must be approximated into subintervals

and consider each subinterval separately. This type of
approach is referred to as a piece-wise interpolation approx-
imation. A more involved piece-wise formulation makes use

of spline functions. Greville [1969] provides a tutorial
introduction to these functions, indicating that they

result in a "best" approximation according to practice and,
in part, theory. This implied optimality turns out to be
analogous to least squares approximation optimality, except

that the criteria is now that of a mean square error mini-

mization between the spline and the actual function. A
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problem arises in the solution of the spline coefficients
very much like that discussed for least squares regression.
Schumaker [1969] gives a partial compilation of some
algorithms for the determination of the unknown coefficients
of particular types of splines. He reports that the
matrices to be evaluated are "ill-conditioned." 1In order
to circumvent this problem, heuristically formulated
algorithms appear to be the ones used in practice. Even
then, these techniques require nothing short of a general
purpose computer to solve the coefficients.

Although polynomial approximations are easy to use
and often work satisfactorily in practice, there are situa-
tions in which other types of approximating functions are
preferable. Transcendental curve-fitting may perform better
when the device function is known to be exponential or
bandlimited. Of particular interest are the cardinal series
sampling expansions. This type of approximation is often
used to reconstruct a bandlimited function which is sampled
at regular intervals (Papoulis [1962]). By bandlimited, it
is meant that the function contains no frequency above some
maximum. The cardinal series expansions are based on the
well-known sampling theorem due to Shannon [1948] and they
require an infinite number of samples for the theoretical
formulation. Since practical considerations restrict a

finite number of data, a truncated series is used. Helms



and Thomas [1962] and Brown [1969] obtain an upper bound on
the truncation error which results when a finite series is
used. Although most applications assume that the data are
regularly spaced, one may obtain an expansion with arbitra-
rily spaced data. Yen [1956] provides such a formulation
for interpolating nonregular samples that is essentially a
Lagrange formula. Others have sought to show a connection
between the cardinal series expansions and the more con-
ventional polynomial interpolation formulas. For example,
Radzyner and Basen [1972] determine an error bound for
Lagrange interpolation. They required that the interpo-
lated function be bandlimited, that the data be equispaced,
and that approximately equal numbers of samples lie on
either side of the interpolation point.

Adaptive curve fitting was also suggested by Chang
[1968]. Here, a curve is to be approximated by a series of
intervals of duration inversely proportionate to the
"curliness" of the curve. Unfortunately, this approach
requires the evaluation of integrals, among other computat-
ional mechanics. The piecing together of these areas may
be dealt with using spline theory, but the criterion of
performance is usually how good the spline approximates the
data and not how well one can expect it to perform for
other points. With this inadequacy, along with the

difficulty in obtaining the spline adaptively, such an
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"adaptive" procedure does not appear to be of practical
consequence for device testing.

To the extent that conventional interpolation and
extrapolation formulas are used in the determination of
bounds in Chapter 5, one may expect existing curve-fitting
techniques to be applicable to the thesis developments.

The major difference in applying curve-fitting techniques
to the methods of Chapter 5 lies in the fact that these
methods use statistical information in place of some of
the deterministic data normally required by interpolation
and extrapolation formulas.

A particular type of extrapolation problem is con-
sidered in the thesis. This problem is concerned with the
extrapolation of a time dependent device function over
large intervals of time. This extrapolation is to be per-
formed using as a data, sequence of observations of the
function over an initial period of time. These observations
or measurements are made at regular intervals and the
extrapolation interval is from the last observation to a
later point in time. The meaning of the word "large" here
is that the extrapolation interval is at least an order of
magnitude larger than the measurement interval.

This extrapolation problem corresponds to an important
class of practical problems arising in the automated testing

of certain types of devices. These problems arise from
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determining long term storage effects on devices. In the
case of electronic devices such as monolithic circuits, the
additional problem of life testing may be similar to storage
testing in that time rather than the number of cycles of
operation (oscillations or state changes) affects the mean-
time before failure (MTBF). As an indication of the extreme
importance of this problem, one may refer to the experiment-
al studies of storage and wearout mechanisms reported by
Black and Hall [1972], Elliot [1973], Milek [1969], Schlegel
[1969], and Welker [1973].

The extrapolation problem is to predict the long term
storage effects for a particular device based on a short
time observation of the device characteristics. Since
practical considerations require that this observation or
testing time be minimized, it is clear that one must minimize
the number of measurement intervals required to characterize
the device. The extrapolation problem is therefore consis-
tent with the basic problem considered in the thesis.

Since the approximation error of conventional extrapo-
lation formulas are usually proportional to the extrapola-
tion distance raised to a positive power (Hamming [1962]),
it is apparent that such techniques are not suited to long
term prediction applications. In reviewing literature

related to predicting storage and wearout effects, it is
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noted that many investigators! avoid the prediction problem
completely by considering only the failure distributions of
the device type. Besides the fact that no information about
a particular device is used in determining its future per-
formance, such an approach suffers from its dependence on
the definition of failure which may not agree with the
definition made by a would-be user of this analysis.

In order to avoid the above shortcomings of convention-
al extrapolation and the failure distribution approach, it
is useful to consider the area of pattern recognition
theory. In many practical situations, one may be interested
in classifying the predicted device storage effects into two
categories. That is, whether the device is expected to be
acceptable or unacceptable at a future point in time. Using
a pattern recognition approach, measurements made on the
device would be organized as a vector called a pattern.

Each measurement might, for example, correspond to a com-
ponent of the pattern. These components are called features
(Nilsson [1965]). The most simple pattern recognizer is a
system which would generate a binary response to each

pattern presented to the recognizer. This response

!This approach is a special topic of reliability analysis.
In addition to the papers already reviewed, threec other
examples of the approach are Pollock [1967], Sarkar [1971],
and Taylor [1973].



31

indicates which category the presented pattern is classified
as by the recognizer.

One of the primary considerations in using pattern
recognition theory is the selection of the pattern com-
ponents. This selection process is called feature extrac-
tion. Levine [1969] presents a survey of work in the area
of feature extraction. He emphasizes a conclusion by many
investigators that the methods of feature extraction are
often empirical and use many ad hoc strategies.

The set of all possible patterns in a particular
application can be considered to represent a vector space
or at least span a vector space. Much of the developments
of pattern recognition techniques assume that there exists
a hyperplane space which divides the pattern space such
that all the patterns belonging to one of the pattern
categories lie on one side of the hyperplane, and the
remaining patterns lie on the other side (Nilsson [1965]
and Sebestyen [1962]). 1In this case, the patterns are said
to be linearly separable. The meaning and ramifications
of linear separability are further explored later in the
thesis, and one may obtain an introduction to the general
theory of pattern classifiers in Nilsson [1965]. It is
important to bring up the term of linear separability in
that much of the important theory concerning pattern

classifiers makes an assumption of this property.
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It happens that in many important situations, the
patterns are not linearly separable. As a way around this,
a transformation can sometimes be obtained which results in
a new pattern space which is linearly separable. Sebestyen
[1962] presents some of the types of transformations that
may be tried. There is no general theory which can be used
to generate particular transformations, and like the area
of feature extraction, empirical methods and ad hoc strat-
egies must be resorted to. One such strategy reported by
Kruskal [1972], attempts to find a linear transformation
which will reveal a "cluster structure" in a multi-
dimensional pattern space. This technique uses an "index
of condensation" which is, "intended to indicate, for a
given configuration of points, the extent to which these
points are condensed around point centers or low-dimensional
structures. This index does not depend on a tentative
description of the low-dimensional structures around which
the condensation presumably occurs." Unfortunately, author
Kruskal admits that his intuitively derived condensation
indices fail to perform satisfactorily even for well
defined geometrically clustered points. He also warns that,
"even if a good index of condensation is discovered, its
practical value depends in part on the feasibility of

optimizing it over a suitable set of linear transformations."
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Work has also been conducted on adaptive procedures
which form nonlinear hypersurfaces for the separation of
patterns (Kobylarz [1968]). For this situation, the require-
ment of linear separability is relieved. The paper includes
a theorem which interrelates the dimension of the Nth order
Euclidean space and a minimum "order" adaptive scheme that
will guarantee separability for all consistent patterns.

An important feature of pattern recognition theory
techniques is that one may obtain the classification mapp-
ing by a training procedure under certain conditions. This
training procedure, described by Nilsson [1965], requires a
set of patterns known as a training set of which it is
known beforehand which patterns belong to each of the
pattern categories. By repeatedly applying the training
patterns to the pattern classifier and making corrections
of certain weights of the classifier according to a train-
ing algorithm, one may obtain the required mapping under
convergent conditions. Nilsson further states that conver-
gence usually means that after a finite number of training
cycles, a given percentage of the training patterns will be
classified correctly. The condition of convergence usually
requires that the training set be linearly separable or at
least approximately separable. Nilsson [1965] and
Sebestyen [1962] consider many types of training algorithms

and proofs of convergence.
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Once trained, the classifier is assumed to classify
other patterns correctly. Obviously the performance of the
classifier for patterns not belonging to the training set
depends strongly on how representative the training set was
of the entire pattern set. The quality of the training set
in characterizing the entire pattern set must be considered
in applying pattern classification techniques to practical
problems.

Pattern recognition theory has been applied to the
problem of predicting long term reliability of electronic
devices. Pokrovsky [1972] proposed using device parameters
as features in such an approach. Here k parameters are
measured at N regular intervals of time. A pattern consists
of the kN parameter values. A pattern is considered to
belong to either a failure class or a reliable class. The
failure class pattern corresponds to devices that eventually
fail in some way before a maximum life span T. A failure
is considered to occur when one of the parameters reaches
some a priori tolerance threshold. This approach suffers
from several drawbacks. First, the larger the required N,
the greater the dimension of the pattern recognizer.

Because of this, one needs an increasing number of training
patterns to effectively train the recognizer as N increases.
Second, there is no reason to expect that the pattern space

is linearly separable nor is there any way to predict the
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order of a nonlinear machine that will separate the training
set. But even more important, this approach is sensitive

to the definition of failure (i. e. the critical thresholds)
and to the particular conditions under which the initial
testing was carried out. It is the characteristic of
engineering design that what is unacceptable to one design
is acceptable to another. Except when failure is catastroph-
ic, there is often no clear-cut threshold of unacceptability
since the threshold depends on specific design criteria.
Moreover, the above approach requires that the environment
under which the training samples were obtained by the same
for the patterns that the recognizer later classifies. This
rules out classification of patterns obtained under changes
in the environment as well as being useful for analysis of
accelerated testing. For moderate increases in temperature
or voltage, one can often assume that the failure mechanisms
will be speeded up.! Moreover, from one device to the next,
the dynamics of the same type of failure mechanism can be
expected to vary. Thus any approach which assumes a fixed
rate of failure or a fixed threshold of failure is limited

in its usefulness.

IThis idea is often the basis of accelerated testing of
electronic devices. See Elliot [1973], Bruitz [1969], and
Kooi [1968] for discussions of this idea based on device
physics.
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In section 2.4, it will be explained how the basic
concepts of a trainable pattern recognizer can be used in
a new approach to the problem of long term extrapolation.
This approach will be developed in Chapter 6.

2.3 Review of Several Topics Indirectly Related to Device
Testing

Several topics will be briefly reviewed in this section
which, although not directly related to the developments in
this thesis, are of general interest to the problem of
device testing. The relevance of each topic to device
testing will also be explained in this section.

The first topic considered is reliability theory. It
is natural to consider this topic when studying automated
testing since reliability analysis often indicates what kind
of information should be determined for a device. However,
reliability analysis gives little insight into how this
information may be obtained. Reliability theory is often
useful in relating the failure rate characteristics and
often the functional characteristics of individual devices
to the characteristics of a larger system in which the
devices operate (Bracchi and Somalvico [1971]) and (Brown
and Martz [1971]). In circuit design applications for
example, the circuit performance is often expressed in terms
of its sensitivity to variations of component values
(Herskowitz [1968]). Thus the allowable operating

characteristics of a device is often dictated by reliability



considerations of a specific system design. Furthermore,
"failure" of a device may be defined by the application at
hand. As an example, military specifications (MIL-SPEC)
are often set for critical system components according to
special operating requirements.

When reliability statistics are known for systems
elements, the overall systems reliability can be calculated
by mechanized procedures. Cohn and Ott [1971] use a com-
bination of decision-tree analysis and prior probability
of element failures to generate an adaptive test procedure.
A cost is associated with each test, and the decision-tree
is constructed in such a way to minimize the expected cost
of determining the system status. Fleming [1971] uses the
system topology and prior known failure statistics of sys-
tem blocks to determine systems reliability. The system
must be serial in structure although blocks may be made of
parallel redundant sub-blocks. D. B. Brown [1971] develops
a similar technique in which topology is expressed as a
Boolean function.

More refined statistical analysis of circuits and
other systems allows more complex topology. Bracchi and
Somalvico [1971] describe three approaches used by others
and introduce a fourth. In all four, one is trying to
determine the effect of component variability on circuit

performance for the purpose of design. Each approach
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requires that the component variability be known and that
it be in the form of probability density functions. The
major difference between the methods is in the way that
the required component variability information is combined
to form an overall measure of circuit reliability.

In the developments of this thesis, an assumption will
be often made that an acceptability region has been deter-
mined within which a device function is required to lie,
for the device to be acceptable. This function may be an
input-output function, or it may be a parameter function
dependent on an environmental variable or on time. In
any case, it is through techniques such as reliability
analysis that one can determine the acceptability con-
straints on device functions.

A second topic that requires some consideration is
that of design of experiments (Wald [1943]). The reason
for this concern is that it is possible to draw an analogy
between a special type of device testing problem and the
theory of design of experiments.

In order to describe the special testing problem, it
is useful to consider the following hypothetical situation.
A device is known to have a potential mode of long term
failure, approximately described by one of several possible
mathematical models. These models are functions of a

multidimensional input vector x. The problem is to
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determine optimal input vectors that enable one to determine
which failure model is to be used to describe the failure
mechanism and to determine the unknown parameters for the
selected model. Since the models being considered corre-
spond to a mechanism that produces an eventual failure, the
practical usefulness of determining the model and its
parameters is to predict the long term reliability of the
device. In other words, the response of the device for

the various optimal input vectors is used ﬁo extrapolate
present and past device behavior to a future point in time.

With the above testing problem in mind, one may briefly
consider several important papers in the area of design
of experiments. In what follows, it is assumed that a
model equation is known and that a non-negligible experimen-
tal (measurement) error exists. This error is assumed to
be a random error, normally distributed, with known variance
and zero mean.

Wald [1943] considered the problem of testing a linear
hypothesis. He considered N independently, normally
distributed varieties Yy i=1,...N having a common
variance 02. The expected values of y; were assumed to be
given by

E[Yi] = lel,i & 82x2,i T Bpxp,i
where the xji's were assumed known and could be considered

as inputs, while the Bj's were unknown parameters. The Bj's
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were population regression coefficients of y on x. The
linear hypothesis was that the unknown coefficients Bj
satisfy a set of linear equations,

B =g, (i=1l,...,r;r<p).

i,pp 1
The problem was to test this hypothesis through N observa-

gi’lBl"". - .+g

tions, and to pick the corresponding p-dimensioned vectors
gi(i=l,...N) in such a way as to maximize the sensitivity
of the test. 1In his paper, Wald determined that the
optimum choice of the vectors X, occurs when the variance
of the least square estimate b of B is a minimum. The
actual mechanics for determining the Ei's in a domain D
are discussed in this paper.

A later paper by Box and Lucas [1959] considered a
similar problem, but allowed a nonlinear situation. Here
they dealt with a response function
6

f(xl,xz,...,x = £(x;0)

k; ll"'lep)
where the xi's are inputs and the Gi's are parameters. The
authors presented the formulation as a design of an exper-
iment for some physical process, run N times. The problem
was to choose the Nk values of input values of Xij’ where
the subscripts referred to the jth run value of input i.
R = {xij}
called the design matrix. The ultimate aim was to obtain

a design matrix which enabled high accuracy in the

determination of the model parameter, 6.



The authors' criteria for the selection of the design
matrix was to choose D so that the determinant ](E’ E)-ll
is made as large as possible, where the matrix F = Ifrjl.
The experimental error in measuring the response is assumed
to have a zero mean and a constant, although unknown,
variance. Inherent in this criteria was that a least
squares estimate of O is used as the method of "fitting"
the experimental data.

Since the derivatives, frj are dependent on the 0's,
the practical problem of finding these values may be
difficult. If approximate estimates of the 6's are avail-
able, one may assume that £ is linear in er near 90' Using
this approximation, the authors used a geometrical formu-
lation to obtain a solution for simple problems. They
also suggested numerical methods which could be used when
the linear approximation was not valid.

In another paper, Box and Hunter [1965] extend the
previous problem by considering also a mean of determining
the adequacy of the experimental model, represented by the
response function £(8; x, t). For each "run" of the
experiment, the inputs x are chosen and observations of
the response are made at specific values of time. For a
given run, a least squares estimate of the parameters is

obtained, denoted gj. If N runs are conducted, each with

different x vectors, a least squares estimate of the

41



42

parameters, 0, is possible with the complete set of data,
in addition to the run estimate. Adequacy is measured as
the dependency of gj - 6 on the levels ﬁj' Thus data is
used here to evaluate the model rather than the parameters
of the model, although both tasks are required in practice.

The techniques just discussed are potentially appli-
cable to the hypothetical testing situation discussed
earlier. Each experimental run required by the techniques
would correspond to the observation of a particular device
over a period of time preceeding a failure. Since one
cannot initially predict if the failure mechanism is present
in a device, many devices would have to be tested in order
to guarantee that among these devices, a sufficient number
would exhibit a failure. Using the design of experiments
approach, one could therefore determine the failure model
and its parameters, and could also determine the model's
adequacy.

In this thesis, alternative approaches will be taken
to device testing, in connection with failure prediction.
One major reason for rejecting the experimental design
approach is that one often has no a priori models for the
failure mechanism. Even if the mathematical models are
available, it is questionable whether one cauld expect the
model parameters to be the same from device to device.

Nevertheless, the theory of design of experiments seems
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important enough to the author to include in a general
literature review. It is expected that there are special
situations in practical device testing applications in
which the theory may be successfully applied.

The last topic discussed in this section is the con-
cept of entropy (Shannon [1948]). The reason for including
this topic in the literature review is that entropy can be
a useful tool in studying many statistical processes. If
one views the additional information provided by a measure-
ment as the opposite of noise, one can interpret this infor-
mation change as a reduction in entropy. In this thesis,
measurement information for a particular device will be
combined with prior statistical information gathered for
many devices. Although entropy theory will not be directly

utilized in most of the developments,®

it is expected
that this theory may be generally useful to the reader in
understanding these developments. A brief review of
several applications of entropy theory to generally relevant
problems is therefore given.

Since Shannon [1948] showed how the concept of entropy

could be applied to the study of communications channels,

various other investigators have sought to apply the concept

IThe principle of minimum information (Evans [1969])
(maximum entropy) will be directly used in the proof of a
theorem given in the following chapter.
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to other statistical processes. One such application was
to the area of design of experiments. Box and Hill [1967]
showed how the previously discussed techniques of parameter
estimation could be extended to the situation wherein several
equally likely models were conditions for a mechanistic
process. Entropy was used here as a means for discriminat-
ing between the models and as a basis for determining addi-
tional testing conditions in a sequence of experimental
runs. Hill, et al. [1968] and Hill and Hunter [1969]
extended this initial technique to a more general problem
of combining parameter estimation with model discrimination.

Entropy theory has also been used to study the concept
of prior probabilities and to justify the utilization of
these probability measures in Bayesian analysis.! Jaynes
[1968] demonstrated that the concepts of entropy and prior
probabilities are consistent, provided they are properly
applied. Using an argument of maximum entropy, he proved
an equivalence of the two concepts. Jaynes also suggested
that the principle of maximum entropy could be applied to
such areas as reliability theory.

Evans [1969] considered Jaynes' paper [1968] in

relation to reliability theory. Redefining the principle

'Bayesian analysis will be utilized in a development of the
next chapter.
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of maximum entropy as a principle of minimum information,!
he indicated that in any practical problem, unknown prob-
abilities should be allocated so that the resulting infor-
mation is minimized within the problem constraints.
Regulinski [1969] also suggested that reliability theory
could be aided by the incorporation of the entropy concept.
He drew a parallel between Shannon's communications channel
and situations found in reliability theory, and proposed
several problems to be solved, although offering no solu-
tions. An example of one success in applying the principle
of maximum entropy to reliability is found in a paper by
Simkins [1972]. Using a Weibull model for a hazard function,
he used entropy as a figure of merit in this reliability
analysis application. Bayesian analysis was used as a
means of updating the model parameters after each of a
sequence of deterministic tests.

In conclusion of this section, the topics of reliability
theory, design of experiments, and the concept of entropy
have been briefly reviewed. It is expected that these topics
will provide the reader with a backgorund that will be use-

ful in the understanding of this thesis developments.

!The term information is used here in the sense of
Shannon [1948].



2.4 Conclusions Made of the Reviewed Literature In this

section several important conclusions are made of the
reviewed literature. This conclusion indicates a void in
existing techniques regarding theory for applying interpo-
lation and extrapolation procedures to the special appli-
cations of automated testing systems. It has been seen
that exact-fit approximations are often preferable tech-
niques when a device function is to be represented using

a number of discrete measurements. These techniques,
especially the polynomial approximations, are readily
mechanized and often give sufficiently accurate results.
However, these conventional techniques fail to utilize all
the information that is often available. 1In practical
situations, one measures the functional behavior of large
numbers of devices of the same type. Furthermore, it is
reasonable to require an initial concerted measurement
effort for several lots of devices if the information
obtained can be used to economize the testing of devices
on a production basis. This economy can take the form of
simpler testing systems than the initial laboratory systems
and a reduction in the testing time per device for the
production or field system. Such an initial intense data
gathering effort would allow estimates of the distributions

of device functional values.
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It appears that the statistical information just
discussed should be incorporated into the conventional
curve-fitting techniques in order to achieve a reduction
in the number of measurements required to characterize a
device. The characterization amounts to the interpolation
of the device function between data points. Since the
requirements of such a characterization is to determine if
the device function lies between tolerance limits within
which the device is said to function properly, it is clear
one may use tolerance limits for the data used to determine
the approximation formula. While such an approach may seem
quite reasonable, one finds a void in the literature along
these lines. The initial ideas of this approach are
developed in the next chapter. 1In a subsequent chapter,
the approach is formalized for exact-fit polynomial and
transcendental interpolation and extrapolation.

One may observe that the use of tolerance limits for
data directly in approximation formulas accomplishes direct
incorporation of prior information into conventional tech-
niques. Another new approach developed in this thesis
will utilize concepts of pattern recognition theory in
order to determine extrapolation formulas that are better
suited to the long term extrapolation problem described in
the last section. Prior information in the form of a

training set of patterns will be used to modify the
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conventional techniques of extrapolation. The intention
of such an approach is to obtain extrapolation algorithms
that are more accurate than conventional formulas, thus
allowing a reduction in the required number of measure-
ments to characterize a device. This reduction is seen to
allow earlier predictions of future reliability of devices.
This approach will additionally require a classification
procedure to interpret the extrapolated device functions.
It is noted that the developments in this thesis
concerning adaptive extrapolation will help to fill a void
existing in the literature. Lucky [1968] considered a
problem analogous to adaptive extrapolation in a paper on
filter theory. Here the extrapolation was continuous and
was used in a data compression system for redundancy re-
moval. In this situation, the function of the extrapolator
was that of a predictor. Furthermore, discrete data could
also be handled if the system was constructed as a predic-
tive digital filter. The difficulty in applying his
results to long term reliability prediction is two-fold.
First, the observations that are used to train the extrapo-
lator must be contiguous. This does not allow for obser-
vations that are dispersed throughout a large interval of
time to be used as training patterns. Nor can training
patterns observed for many devices be used in this predic-

tive filter approach. The second difficulty in using
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Lucky's techniques is that multivariate extrapolation is
not generally attainable.

In conclusion, this literature review has examined
topics related to the theory for applying interpolation
and extrapolation procedures to automated testing systems.
From the reviewed literature, a conclusion is made that
there exists several voids in this subject area. This
thesis will attempt to partially fill the voids with the
expectation of providing improved techniques useful for

many automated testing situations.
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3. PRELIMINARY CONSIDERATIONS

3.1 Introduction This chapter is devoted to preliminary

considerations of the problem of combining prior information
with measurements made on a particular device. The material
in this chapter is to provide the reader with a background
for the initial approaches considered by the author. The
chapter contains three different topics which represent
potential starting points for later results. The first topic
is concerned with fundamental techniques which combine deter-
ministic device function measurements with "statistical
data." Because this thesis will use the terms statistical
data and deterministic data frequently, it is important to
point out the intended meanings of both. If a great number
of similar devices are measured at the same input conditions,
these measurements may be organized as a distribution of a
statistical quantity. This quantity is the device function
evaluated at the particular input conditions for which the
measurements were obtained. In this thesis, the term
"statistical data" will always mean the value or the raﬁge
of values of the device function obtained from a statistical
distribution. The term "deterministic data" will always
mean the value obtained by direct measurement made on a
particular device. The term "function" will always signify

a "single-valued function."
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The preliminary topic introduces a basic problem. The
problem demonstrates the need to linearly combine tolerance
limits of random variables. By assuming that the random
variables are independent in the statistical sense, the com-
plexity of the combination problem is reduced. However,
there still is a need to simplify the process in which the
bounds on the random variables can be combined. A particu-
lar combining algorithm will be described which is used in
the preliminary topic described above. The second topic of
the chapter considers alternative algorithms with respect to
their suitability for the statistical interpolation tech-
niques first discussed.

The last topic of the chapter concerns a special aspect
of device testing. The problem relates to the determination
of process parameter effects over the area of a monolithic
circuit. While this last topic is somewhat different from
the remaining developments of the thesis, it is included '
because of its importance in the testing of integrated cir-
cuits. It is aléo noted that the topic addresses the prin-
ciple problem studied in this thesis. That is, it enables a
reduction in the number of deterministic measurements that
must be made on a particular device to satisfactorily
characterize it.

3.2 Basic Concepts Consider a device having an input-

output function f(x) which is continuous, instantaneous, and

allowably nonlinear. The function f(x) represents a means
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of characterizing the relation between a measurable re-
sponse (output) and a controllable entity (input) which acts
on the device. The input, x, may be an electrical variable
such as a voltage or current, for example. This input vari- .
able, x, may also be an environmental quantity such as temp-
erature or pressure. The function, f(x), will be referred

to as a "device function" or a "response function" in this
thesis.

- The function f(x) will be assumed continuous throughout
this thesis. 1In this section, the derivative of f(x),
f'(x), will also be required to be continuous. Another
requirement of f(x) will be that it is an instantaneous
function of x. That is, the function value f(x) at any
instant in time depends at most on the input value x at the
same instant, but not on past or future values of the input.

Let it be further assumed that the probability density
function, h(x, z), of f'(x) be known. That is, for any x in
the open interval c, one may write (Feller [1968])

b

pla<f' (x)<b} = [ h(x,z)dz (3.1)

a
where x is a parameter of the probability density function
(pdf), and z represents the explicit variable of the pdf
variation. (One may wonder at the practicality of requiring
the pdf at every point in an interval of the parameter x,
let alone at a specific point. The acquisition of such prior

information will be discussed at the end of this section).



Suppose a particular device is tested by simulating
the input x at some point X, and measuring the response
f(xo). Assuming that the measurement error is negligible,
if f(x) were measured for some x differentially close to X
the value of f(x) at this second point must be approximately
that of f(xo), due to the continuity assumption of f(x).
Intuitively, one suspects that the certainty of knowing the
value of f(x) must vary inversely with the distance from X
with no other assumed prior knowledge other than the con-
straints on f(x).

In this section, it will be considered how to combine
prior statistical information in the form of the pdf of
f'(x) with deterministic measurements in order to obtain a
bound on f(x) near a deterministic data point. The process
by which this is accomplished here will be referred to as
statistically based interpolation and extrapolation
(Herman and Kobylarz [1972]).

Let the measurement of f(xo) be made. Consider the
interval [xo, -Ax X +Ax] , where the positive constant Ax
is chosen sufficiently small so that f(x) is nearly linear
in the interval. That is, the Taylor series of f(x) at X

may be written

f(x) = f(xo) + (x—xo) f'(xo) + € (3.2)

53

where the truncation error e is assumed small for the interval

[xo-Ax, xoi-Ax]. Presently, the magnitude of Ax that allows

a linear approximation will be assumed known. The
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consideration of the size of Ax will become unnecessary when
the interval is allowed to become differential.
Corresponding to a confidence level a, it is possible
to define the tolerance limits (TL's) a and b, for the value
f'(xo), by
) :
@ = p {azf'(x_)<b} = [ h(x_,z)dz (3.3)
a
provided that some further convention be chosen in the def-
inition. 1In the case of a symmetric or near symmetric pdf,
one usually requires that the TL's be symmetrically placed
about the distribution mean, u. That is, the lower TL, a,

is defined by

nix_)

a/2 = p {aif'(xo)iu(xo)} = i © h(x_ ,z)dz (3.4a)
and the upper TL is defined by
b
a/2 = p {u(x )<f' (x )<b} = [ h(x_,z)dz (3.4b)
u(xo)
where
H(x,) E_LZoh(xo,z)dz. (3.5)

In what follows, the definition of equation (3.4) will be
used to establish the TL's. The two limits may be used to
define an interval [a, b] for f'(xo). This interval will be
referred to as a tolerance interval (TI) throughout the

thesis,
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Suppose the device has been tested at X, SO that the
value of f(xo) is known for this device. Additionally, let
the TI be established for f'(xo) for some value of the con-
fidence level, o, using equation (3.4). Substituting the
approximation of equation (3.2) for x=xo+Ax (neglecting €)
into (3.3) yields, after manipulation,

a =p {f(xo)+a-Axif(xO+Ax)if(xo)+b-Ax}. (3.6)
For a negative excursion along the x axis, (x=xo—Ax) assum-
ing the same Ax is appropriate, one has

a =p {f(xo)—b-Axif(xO—Ax)if(xo)—a-Ax}. (3.7)
Figure 3.1 depicts equations (3.6) and (3.7).

The preceding results may be summarized by:

Theorem 3.1 Let f(x) be a continuous, instantaneous, non-

linear function, and let f(xo) be known. Let the derivative
of f(x), f£'(x), be continuous also, and let the TI for
f‘(xo) be known for a particular confidence level o as
defined by (3.4).
If for some truncation error €, a positive bound g,
and Ax exist, such that
|f(x)—f(xo)—(x—xo)-f'(xo)|ia
for x in [xo—Ax, xo+Ax], then the probability that
f(xo)+a-Ax—€if(x)if(xo)+b-Ax+g, xoixixo+Ax .

f(x )—b-Ax—g<f(x)<f(x )—a-Ax+2, X —Ax<x<x
o — — o o —="0

is greater than or equal to a.



f(x0)+b-Ax-—~.____“___

f(x0)+a-Ax—-——-——.____.__.__._

f(xo)—— _________

f (xo) -a.-” AX——

f(xo)—b-Ax_

X . =Ax b7d X\ +Ax

Figure 3.1 Construction of a statistical bound on f(x)
near the point x,. The constants a and b represent the
tolerance limits for f'(x) corresponding to a confidence
level o, as defined by equation 3.4. The bound on the
truncation error is assumed negligible here, but could
be added to the bounds obtained by using equation 3.8.
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Definition 3.2 The bound on f (x) corresponding to Theorem

3.1, for €=0 is called a "statistical bound" on f(x).

Theorem 3.1 allows the combination of statistical infor-
mation of the TI for f'(xo) and the deterministic measure-
ment of f(xo). When the truncation error of equation (3.2)
cannot be neglected, it must be added to the statistical
bound as indicated in equation (3.8). Often a bound on this
error is known in terms of the distance Ax, and in terms of
a maximum bound on one of the derivatives of f(x). This
a priori information effectively widens the overall bound on
f(x) in the interval [xo.-Ax, x + AxX] in that the magnitude
of the error bound is added to the upper statistical bound
and subtracted from the lower statistical bound as in (3.8).

One may extend the application of Theorem 3.1 to the
case where the value of f(xX) can be measured at more than
one X. To illustrate this extension, assume that Theorem
3.1 can be applied at any x in some interval c of x much
larger than Ax. That is, for the known positive constants
€ and Ax

| £(x) - {x=x.) - £' (x;) - £(x;)|<t
for x in [xi~Ax,xi+Ax] and [x-Ax,x+Ax] in c. Assume for
the discussion that follows that the approximation error &
can be neglected. Assume that f(xo) and f(xl) are measured,

where Xy = xo+2Ax. At X and x obtain the statistical

ll

bounds on f(x) using Theorem 3.1. Figure (3.2) shows the



f(xl%—

f(xo)— ——————

X —AX x0 X +AX xl xl+Ax

Figure 3.2 Extension of Theorem 3.1 to the case where two
deterministic data points are used to form a statistical
bound on f(x). Note that x,=x,+2Ax. Also note that the
two bounds on f (x,+Ax) do not coincide. The bound on the
truncation error Ps assumed negligible here, but could be
added to the bounds obtained by using equation 3.8.
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two bounds so obtained. Consider the intersection of these
two bounds at X0+Ax. In general the two bounds for f(xO+Ax)
will not coincide, but will usually have some region of
intersection provided o is chosen large enough. Lack of
intersection may be interpreted by considering the two ex-
trapolated values of f(xo+ Ax) as random variables (RV's).
If these two RV's are considered independent, then the prob-
ability of the event that f(xo+Ax) is within one of the two
bounds, but not the other is 2a(l-o). For an a=.95, the
probability of non-intersection is thus .095. On the other
hand, the probability that f(xo+Ax) does not lie within
either of the two bounds is (l—oc)2 or .0025. The probabil-
ity that f(xO+Ax) lies within both bounds (intersection) is
az or .9025. Finally, the probability that f(xO+Ax) lies
within either/or both bounds (union) is a(2-a) or .9975 for
0=.95.

The results of the previous paragraph and the remarks
concerning the various conditions of intersection raise at
least two questions. The first addresses the problem of
how to combine the two bounds on f(x) resulting from appli-
cation of Theorem 3.1 in order to obtain a combined bound
on f(x) between X and Xq - The second question is that of
determining a confidence level to be associated with this
combined bound.

Although one can invent many strategies to answer the

first question, there are two approaches that deserve
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particular attention. Each of these two approaches defines
a combined bound on f(xo+Ax) in terms of the two TI's of
f(xO+Ax) as the intersection of the individual bounds. The
second strategy forms the combined bound on f(xo+Ax) as the
union. Aside from this difference, both approaches form the

combined bound on f(x) between X and x, as follows. The

1

bound on f(x) between Xq and xO+Ax, and between xo+Ax and X
is constructed by, in effect connecting straight lines
between the combined bound on f(xo+Ax) and the deterministic
data points at X, and Xq - These two strategies are illus-
trated in Figure 3.3. The combined bound on f (x) correspond-
ing to the intersection approach is shown as dashed lines
and the bounds corresponding to the union approach is shown
as dotted lines. Discontinuity of bounds have been avoided,
since they are contrary to the f(x) continuity assumption.
The union-combined bound is more conservative than the
intersection bound in that the former contains the latter
bound. 1In trying to form a basis for choosing one approach
over the other, it is possible to offer several heuristic
arguments. One suspects that a combination of the individ-
ual TI's for f(xO+Ax) should allow an improvement to be
made over either of the bounds considered separately. That
is, corresponding to a particular confidence level, the
bound on f(xo+Ax) using one of the TI's should become nar-

rower when the second TI is additionally obtained. This

intuitive reasoning indicates that the intersection

SEPES—



Bounds from
Intersection
Strategy

:§§¥——Bounds from Union

Strategy

0 X~ +AX X

Figure 3.3 Illustration of the construction of combined
bounds using two different strategies for combining the
individual statistical bounds on f (x) near x, and near x,.
The dashed lines represent the bounds obtained using the
intersection strategy. The dotted lines represent the
bounds obtained using the union strategy. The solid lines
represent the individual statistical bounds as constructed
in Figure 3.2. Note that the solid lines coincide with
either the dotted or the dashed lines within the interval
[xo,xl].
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strategy is easier to justify than the union approach. 1In
order to formalize this rationalization, it is useful to
consider an information theory principle. The principle of
minimum information is a way of assigning probabilities in
the absence of complete specifications for the probabilities.
Evans [1969] explains that, "the principle of minimum infor-
mation states that the unknown probabilities are allocated
so that the information (as defined by Shannon [1948]) is a
minimum within the specified constraints. If this is done,
we will not have added any information to our situation
other than that presented by our constraints. Any other
allocation of probabilities would give a larger value of
information, thus suggesting that we had unwittingly added
more information than implied by the specifications of the
situation. The éssignment of probability made according to
this principle may not correspond to the true values, but
they are the best we can do without adding more information
than we actually had."

In order to apply the principle of minimum information
to the selection of a proper strategy (i.e. choose the
intersection or the union strategy), it is necessary to put
the selection problem into the proper perspective. 1In
either of the two strategies, the ultimate goal is to be
able to assign a probability to two possible states. These

two states are:



Sl: f(x) lies totally within the combined bounds

obtained with the chosen strategy in the interval

[xo, Xl]'
52: the negation of Sl
The obvious requirements on the probabilities of Sl and S,
are:
O<p{s;}<1
(3.9)

p{s;} + pls,} =1
Since the confidence level of the individual TI's on
f(xo+Ax) is preassigned, the assignment of the probabilities
p{Si} represents the choice between the two strategies for
combining the TI's. Therefore, if the principle of minimum
information is to be applied, the strategy resulting in the
minimum information for the resultant bounding of f(x) in
(xo, xl) must be the "best" choice.

The event that f(xo+Ax) lies within the intersection of
the two TI's on f(xO+Ax), remembering the assumption of in-
dependence of these two TI's, is

pI{Sl} = q? (3.10a)
and from (3.9) and (3.10a)

p;{S,} = 1 - o2, (3.10b)
The event that f(xO+Ax) lies within the union of the two
TI's on f(xo+Ax) is

pU{Sl} = 2a(l-a)+a’=a(2-a) (3.11a)
and from (3.9) and (3.1la)

PylS,} = (1-a)? (3.11b)
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The definition of information given by Shannon [1948]! is

I = ZP{SiM”[p{Si}] (3.12)

i

where £n denotes the natural logarithm. Denoting the infor-
mation of the intersection strategy as II(a), substituting
(3.10) in (3.12) yields

I; (o) = a®Lnla®] + (1-a2)Ln[l-a?] (3.13)
Similarly, the information of the union strategy IU(a) is
found by substituting (3.11) in (3.12). Thus

Iy (0) = a(2-a)fnla(2-a) [+(1-a)2Ln[ (1-a) 2] (3.14)
It is important to note that

I; (a) = I; (1-a)
which is easily verified by substitution. Therefore,

II (o) = IU (o), for a = %.
By inspection, one also sees that

II(0)=IU(0)=II(1)=IU(1)=0,
which is an inherent requirement of the definition of infor-
mation. Finally, one may verify by numerical computation
that

II(a)>IU(a), 0<a<
and

I;(@)<Iy(a), %<a<l

It is possible to summarize the results of the last few

paragraphs by a theorem.

'Information of a state.
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Theorem 3.3 Suppose a TI has been obtained for a RV by two

independent observers, who possibly have different (prior)
information. In combining these two TI's into an overall TI
for the RV, it is possible to choose between representing
the bound on the RV as either a union or an intersection of
the individual TI's, where the choice is to be based on the
principle of minimum information.

In particular, if o is the confidence level associated
with each of the individual TI's, then the choice of the
union (intersection) combination is consistent with the
principle of minimum information for o less than (greater
than) one-half. The point of indifference corresponds to o

equal to one-half.

The application of this theorem to the problem of determin-
ing a statistical bound on f(x) in [xo, xl] provides a
rationale for combining two seemingly contradictory bounds
on f(x). The two TI's may differ since they are obtained
with different prior information. The information corre-
sponding to the TI emanating from X and the information
corresponding to the TI emanating from X, are statistically
dependent, in general. It is this dependency that is miss-
ing in the specification of the hypothesized situation.

The result of this incomplete knowledge is the uncertainty
of how to combine the two TI's for f(xo+Ax). Although

Theorem 3.3 offers a philosophical solution to this
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uncertainty, one still needs to justify the principle of
minimum information as the criterion to be used.

Finally, one may consider that if the information re-
garding dependency was incorporated into the probabilities
of equations (3.10) and (3.11), a marginal increase in the
value of IU and II should result. For this to happen, the
confidence level of each combined bounds for f(x) between X,
and X, should increase.

The foregoing lengthy discussion has enabled the ex-
tension of Theorem 3.1 to the situation wherein a statisti-
cal bound on f(x) is obtained between two deterministic data
points in close proximity. This bound is illustrated in
Figure 3.3. Theorem 3.3 has allowed an interpretation to be
placed on the way in which the TI's were combined to form an
overall bound on f(x). The extension of Theorem 3.1 can be
generalized by continuing this bounding process in the pos-
itive and negative x directions to include any overall in-
terval of x. The bound between any two adjacent points is
obtained as was done above for the two points X and X -

For a sufficiently large confidence level (a>%), the inter-
section strategy depicted in Figure 3.3 is used. Should the
two TI's combined by this strategy fail to intersect, one
may require that the interval of x within which this non-
intersection occurs be subdivided. That is, at the midpoint
of the interval, f(x) is measured. The statistical bounding

of f(x) is now performed between the endpoints of the
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subdivided interval and the midpoint. The bounding scheme
can be made more adaptive by requiring additional measure-
ments of f(x) in regions where the obtained bound is deemed
excessive by some a priori criteria.

It is clear that the above scheme will often require an
enormous number of test measurements. When Ax must be kept
very small, this simple statistically based interpolation
scheme may offer little or no advantage over conventional
approaches to characterizing f(x). In order to obtain an
improvement over the previous scheme, it is now considered
how to use the prior statistical information to a fuller
extent. Consider the following construction. Referring to
Figure 3.1, assume a TI has been established at xo+Ax using
Theorem 3.1. Let xl=xO+Ax. Consider the two points,
(xl,f(xo)+b-Ax) and (xl,f(xo)+a-AX). At each of these two
points, construct bounds on f (x) between Xy and xl+Ax=x2
using Theorem 3.1. Since the constants of (3.8) are gener-
ally functions of x, the two TI's for f(xz) are,zmglecthx;g,

[f(xo)+b(xo)-Ax+a(xl)-Ax,f(xo)+b(xo)-Ax+b(xl)-Ax]
and

[f(xo)+a(xo)-Ax+a(xl)-Ax,f(xo)+a(xo)-Ax+b(xl)-Ax].

The above construction is illustrated in Figure 3.4. The
two TI's just obtained at X, can be combined in a number of
ways. The algorithm to be used combines the TI's by taking

the minimum limit of the two lower bounds and the maximum of

the two upper bounds. That is, f(xz) is bounded by



2 X3...

Figure 3.4 Iterative statistical extrapolation. Note
that Ax=xk+ —X) for all k. The bounding algorithm is used
to combingé %he tolerance intervals corresponding to each of

the f'(x;). Use of this algorithm results in the divergent
bound on"f(x) shown as solid lines.
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f(xo)+a(xo)-Ax+a(xl)'Axif(xz)if(xo)+b(xo)Ax+b(xl)-Ax. (3.15)
Moreover, f(x) is bounded between X and X, as shown by the
solid lines in Figure 3.4. The construction just described

can be iterated to produce a bounding of f(x) over many Ax.

Equation (3.15) is easily generalized for the case of N

iterations. 1In this case, neglecting the truncation error bound E,
N-1 N-1

£(x ) +hx- ] a(x;)<f(xy) <f(x )+dx-] b(x;). (3.16)
i=o i=o

This iterative extrapolation of statistical bounds, referred
to hereafter as "iterative extrapolation," is seen to be
useful even in the case that Ax must be kept small. The
major limitation of the iterative extrapolation is that the
bounds are obviously divergent. The practical limit of the
total extrapolation interval depends on the spread of the
derivative TI's used at each iteration, and acceptable width
of the bounds. The acceptability of the obtained bounds is
dictated by the intended use of the device to which f (x)
corresponds. In practice, this a priori information evolves
from reliability analysis of the total system in which the
device is to be used. Therefore, when the bounds obtained
by iterative extrapolation exceed the acceptable range for
f(x), either the device must be rejected, or additional
measurements must be made. The extension of iterative ex-

trapolation to the multiple measurement case will be
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considered shortly, but first it is necessary to discuss the
significance of the bounds obtained by the iterative
extrapolation.

When iterative extrapolation bounds are constructed as
in Figure 3.4, it is necessary to consider the question of
what confidence level can be associated with these composite
bounds. The answer to this question is complex and requires
the assessment of the nature of the combination of infor-
mation that occurs in the iterative process. Although the
following chapter is devoted to the study of this question,
subsequent discussions in this section will require a brief
inspection of this topic.

Consider equation (3.16). The values a(xi) and b(xi)
represent the lower and upper TL's of f'(xi) respectively.
One can see that (3.16) corresponds to

N-1
£lxy) = £(x_ ) + Ax-) £1(x;) (3.17)
i=o
where fi(xi)=a(xi) for the lower limit and fi(xi)=b(xi) for
the upper limit of f(xN). Consider that the values of
f'(xi) and f(xN) can be viewed as RV's in (3.17). If the
f'(xi)'s are assumed independent, then equation (3.17) is a
linear combination of independent RV's. In order to assess
the probability associated with a TI for f(xN), one usually
must first determine the pdf of f(xN). It will be seen in
the next chapter that this involves an N-fold convolution

of the pdf's of f'(xi). Once the pdf of f(xN) has been



obtained, the confidence level of any TI can be determined
by integrating the pdf between the two limits of the TI.

In practice, it is often advisable to avoid the above
procedure, as will be explained shortly. A different ap-
proach involves the linear combination of the TI's for the
f'(xi) in (3.17). In order to explain this second approach,

it is useful to make the following definition.

Definition 3.4 (Bounding Algbrithm) Consider the linear com-

bination of RV's
N
Y =] C,*X, (3.18)

where the Ci's are constants and the Xi's are RV's with
known pdf's. Corresponding to the confidence level o, let
the TI's for each of the Xi be determined according to the
convention of equation (3.4), such that

p {aiixiibi} = a, for all i.

The "composite tolerance interval" (CTI) for Y is given by

N N
(1 min[C;-a,,C b, I<y< ] max[C;a.,C.b.]) (3.19)
1=0 1=0
where
min[u,v] = {u, u<v }
v, otherwise
and
max[u,v] u>v }

1
o
o

v, otherwise
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This process of combination is referred to hereafter as the

"bounding algorithm."

It is first noted that equation (3.16) may be written
as a special form of (3.19) by letting Ci=Ax for all i and
noting that a(xi)jb(xi) by assignment. In this case, Y
corresponds to f(xN)—f(xo). Notice that the construction of
Figure 3.4 is an application of the bounding algorithm.

The CTI produced by the bounding algorithm represents
an enormous simplification over the analytic techniques in-
volving convolution and integration, provided a confidence
level can be associated with this bound. 1In the following
chapter, the association with a confidence level will be
investigated in detail. It will be shown that in many im-
portant cases, the CTI confidence level will be at least a.
The reader is cautioned that although it appears that the
CTI is a "worst case" combination, there are situations in
which the confidence level of this bound is less than a.
Also, there are a number of other possible ways to combine
TI's. Some of these combinations will be considered as the
topic of the next section. In order to refer to the case
where the CTI confidence level is at least that of the
individual TI's combined using the bounding algorithm, it is

useful to consider the following definitions.
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Definition 3.5 (Linear Conformity) Consider the linear com-

bination of RV's, Xpreee Xy

N
Y =i£lcixi.

Suppose the RV's are statistically independent. If a CTI
for Y is obtained using the bounding algorithm and confi-
dence level a corresponding to the individual TI's of the
algorithm, then the collection of the pdf's for the Xi's

are said to be linearly conformal, if and only if the con-

fidence level corresponding to the CTI is at least o, for
all values of the Ci's and with no restriction on the value
of a.

When the N pdf's are linearly conformal, and in addi-
tion, have the same general distribution form, with perhaps,
different distribution parameters, this common distribution

is said to be "self-linearly conformal."

It will be possible, in most cases, to refer to the

two defined conditions as "linear conformity." The reader

will be able to infer the distinction between a collective
property of several different general pdf's, and that of a
property of a single pdf from the context of discussion.

It is now possible to return to the main development of
the iterative extrapolation technique. Referring to equa-
tion (3.16), consider the situation in which the iteration
interval Ax is allowed to approach 0. If the pdf of f'(x)

is known in the interval (x0<x<xr), as previously assumed,
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then it is clear that the TL's of f'(x) as defined by equa-
tion (3.4) can be written as functions of x in that interval;
i.e. a(x) and b(x). Consider the upper limit of (3.16),
N-1 ;
Exg)<f(x)) + ] b(x_+i-4x)-Ax (3.20)
i=o
in which the substitution X, = xo+i-Ax has been made.
Suppose the function b(x) is continuous over the domain
xoixixr. Let

< $o ne =
xo s | <xN—l<XN Xr

be defined such that

xi+l—xi=Ax=(xr—xo)/N (3.21)
Let
Nfl
S, = b(x.) -Ax.
N LT

Then from the Fundamental Theorem of integral calculus

(Thomas [1962]), letting N » « and Ax -+ 0,
X
r
lim Sy = i b (x)dx. (3.22)
o

Realizing that the same analysis is valid for a(x) contin-

uous in X <x<x, ., one may write (3.16) as

X X
r r
£(x,) + | a(x)ax<f(x )<f(x ) + [ b(x)dx. {3...23]
%o %o
Several observations can be made about (3.23). The first

is that by going to a differential iteration interval, the
CTI for f(x) can be obtained in terms of two definite

integrals and the deterministic value f(xo). Since the
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integrals depend only on the values X and X, and the
functions a(x) and b(x), a more convenient form of (3.23)
can be obtained. For some arbitrary point xp within
[xo,xr], one may write the indefinite integrals

A(x) = [ a(x)dx (3.24a)

Il

and

B(x)

| b(x)ax (3.24b)
Then (3.23) can be written as
f(xo)+A(xr)—A(xo)if(xr)if(xo)+B(xr)—B(xO) {3.:25)
For a CTI corresponding to points to the left of X s One
similarly obtains
f(xo)+B(x1)-B(xo)if(xl)if(xo)+A(xl)-A(xo)

(3.26)
for x.<x

1-"o

Since one can predetermine the integral functions A(x) and
B(x) independently of f(xo), construction of a CTI for f (x)
can be further simplified in practice. A way of determin-
ing the continuous statistical bound [A(x),B(x)] will be
considered shortly. First, it must be considered how going
to a differential iteration interval affects the rate of
divergence of the CTI. Referring to Figure 3.4, consider a
single iteration interval in which Ax is chosen so small
that the TL's for f'(x) in this interval are essentially
constant for a fixed a. Suppose the interval is subdivided
into two equal intervals of x. In this case, one may see

that iteration over these two subintervals will produce a

CTI identical to a simple statistical bound obtained as in
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Figure 3.1. Therefore, the subdivision did not increase the
divergence of the bound on f(x). This result indicates that
the divergence is not a function of the number of iterations,
but rather a function of the overall length of the interval
in which f(x) is bounded.

The results of equations (3.23), (3.25), and (3.26) may

be summarized in a theorem.

Theorem 3.6 Corresponding to some confidence level o, let

the TL's for the derivative f'(x) be given as functions of
X, a(x) and b(x) according to the convention of (3.4), such
that XXX Assume that the pdf of f'(x) varies in
[xl,xr] only to the extent that its parameters are allowably
functions of x. Given the functional value of f(xo), where
X is in [Xl’xr]’ if the pdf of f'(x) is self-linearly
conformal, for any N in (3.20), then f(x) is statistically

bounded by the CTI

X X
f(Xo)+xfa(u)duif(x)if(xo)+xfb(u)du, X SX<X, (3.27a)
o} o

and

X X
£(x )+ [b(u)dusf(x)<f(x )+ fa(u)du, x

X X
o] o

lixixo (3.27b)

with a corresponding confidence level of at least o.
Furthermore, using the integral functions of equation (3.24)

the bound of (3.27) is also written as
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Ex ) +A ) -A(x,) <E(x)<f (x)+B(x)-B(x ), x <x<x_ (3.28a)

f(xo)+B(X)—B(xo)§f(x)§ﬂxo)+A(x)—A(xo), x,<x<x o (3.28D)

1
With the exception of two considerations, this theorem has
been proven above. One of these considerations corresponds
to the implied requirement that the values of f'(x) at any
two points in the interval [xl,xr] are statistically in-
dependent. Obviously, this is impossible since the two
values are related by the function f(x) itself. In the next
section, it will be shown that the assumption of independence
causes no problem in the validity of Theorem 3.6. In fact,
for the extreme case in which one derivative value is a
deterministic function of the other, the confidence level
for the CTI of (3.28) can be equal to a.

The second comment on Theorem 3.6 concerns the implied
generalization of Definition 3.5 regarding linear conformal
pdf's. That is, it has been required that the linear com-
bination of any N independent RV's leads to a linearly
conformal situation.

In the next chapter, this generalization is proven
valid for an important class of pdf's. It is also shown
heuristically why this generalization can be expected to be
valid for other pdf's.

It may occur to the reader that Theorem 3.6 can be ex-
tended to provide bounds on f (x) between a pair of determi-
nistic data points. Such an extension can be accomplished

in much the same wéy that Theorem 3.1 was extended.
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Consider Figure 3.5, in which deterministic measurements on
f (x) have been obtained at X and Xq- At each of these two
points, a CTI for f(x) in [xo,xl] and corresponding to the
same confidence level o is obtained using Theorem 3.6. Con-
sider an X0 between X and X, In general, the two statis-
tical bounds on f(x) at X have a non-void intersection, but
will not coincide. 1In determining how to combine these two
bounds for f(xm), one may note that the same situation exists
here that was faced in Figure 3.2 at xO+Ax. Envoking
Theorem 3.3, assuming o>%, one concludes that the inter-
section of these two bounds should be used as the overall
bound on f(xm). If this is done at each point in [xo,xll,
the bound on f(x) in this interval is the intersection of
the two regions bounded by the separate CTI's. The combined
CTI is thus the cross-hatched region in Figure 3.5. Note
that the same comments about non-intersection and excessive
bounds that were given for the construction of Figures 3.2
and 3.3 apply to Figure 3.5. That is, the conditions of
non-intersection and excessive bounds can be used to indi-
cate the need for measurement of f(x) in the regions having
such conditions.

The remainder of this section will deal with practical
considerations of the assumptions and requirements of pre-
ceding developments. At the heart of these developments
has been the need to know the pdf of f'(x), usually as a

continuous function of x. Except when each member of a



f(xl)__..__...____._________

Combined

£(xp) T—— CTI

Figure 3.5 Extension of Theorem 3.6 to the case where two
deterministic data points are used to form a statistical

bound on f(x). The cross-hatched region represents the
combined CTI for f(x) between x, and X,. Note that X is
any point between x, and x,. At X, th& combined CTI 1s the

intersection of the two separate CTI's.
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sample space (population) of a RV can be observed, the prob-
ability distribution of the RV cannot be measured. However,
it is often possible to determine a statistical estimate of
the distribution which will suffice for practical purposes.

In order to show reasons for avoiding the determination
of a pdf, consider how one obtains an estimate of a pdf for
f'(xo). If the pdf is not assumed to be of a standard form,
then estimation involves measuring f'(xo) for many similar
devices' and plotting a frequency distribution curve of the
measurement values. Alternatively, a cumulative distribu-
tion function is often plotted in practice. To conveniently
represent the result of this frequency plot, curve-fitting
techniques can be employed to obtain a function which approx-
imates the frequency distribution curve. A further approx-
imation results by subsequently using this function as the
pdf for f'(xo).

It is easy to see why the approach to estimating the
pdf of f'(xo) is unsatisfactory for application to the de-
velopments of this section. A separate frequency plot is
required at each x that the pdf is required to be known.
Since the number of values of x that the pdf is used can be
enormous and since the above estimation procedure does not

allow for any interpolation between points, other estimation

7t is assumed that the function f(x) corresponds to a
device belonging to a very large population of devices of
the same device type.



approaches are necessary. Fortunately, one can often find a
standard distribution function to represent the statistical
data. Estimation of the pdf then involves determining esti-
mates of the distribution parameters. Usually these esti-
mates are in the form of averages. As an example, f'(xo)
may have a nearly normal distribution. If M devices are
tested to determine their corresponding measured values of
f'(xo), yi(xo), then the distribution mean u(xo) and vari-

ance oz(xo) may be estimated by (Bowker and Lieberman [1964])

M

Mg (%) =i£lyi(xo) (3.29)
M

2 i 2 = 2

ol (x,) ={i£1yi (XO)}-{izlyi(Xo)} /M (3.30)

M-1
where the subscript e indicates that the results are esti-
mates. One notes that since the estimates are effectively
sums and sums of squares of continuous functions, they must
also be continuous (Thomas [1962]). Since these estimates
involve averages of functions, one intuitively expects them
to vary more slowly than the functions themselves. 1In
order to represent the pdf of f'(x) over an interval of x,
the parameter estimates can be determined at regular inter-
vals of x, and then conventional interpolation techniques
can be used to provide values of the parameters between
these points. One must determine,by inspection of the

"gathered statistical data, the magnitude of the spacing for
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these interpolation points by observing how rapidly the
parameter function changes between points.

The "standard function" approach to determining an es-
timate of the pdf of f'(x) is easier to implement than the
more general approach first considered. However, a diffi-
culty arises in determining how close the actual distribu-
tion is to the standard form. Moreover, the techniques of
this section require only the TI for f'(x) rather than the
pdf itself. Since one usually can decide ahead of time what
value confidence level to use, it appears that an estimation
of the TI's directly from the statistical data is preferred.
The TL's are determined at regular intervals of x, and then
conventional interpolation of these values is used to rep-
resent the TL's between these interpolation points. One
must inspect the statistical data in order to determine the
appropriate spacing of the interpolation points. This spac-
ing will, of course, influence the amount of preliminary
testing of the sampled devices. It is also important to
note that for each value of the confidence level o, a
separate TI must be determined at each x. Usually one is
interested in only one or two values of a.

The determination of the TL's from the statistical data
can be accomplished using well established methods of es-
timation theory. This area of statistics is a topic in most
applied statistics texts and will not be presented here in

any detail. It is worth indicating two general approaches
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to estimating TL's. The first assumes that the pdf is
Gaussian-normal. The TL's for this "two-sided" TI is deter-
mined using the sample mean, sample variance, number of sam-
ples, confidence level o, and another probability B. The
second probability corresponds to the assurance that at
least 100(a)% of the actual distribution will lie within the
estimated TI (Bowker and Lieberman [1964]). The second es-
timation approach may be used when no assumption about the
underlying distribution is made. Assume at some point Xs
the statistic corresponding to the mth largest measured
value of f'(xp) and the statistic corresponding to the mth
smallest measured value of f'(xp) for a sample of M devices
are determined. Then the estimate of the TI at this xp is
determined by both of these "order" statistics as TL's. The
probability B that this estimate contains at least 100 ()%
of the actual distribution for f'(xp) is given by (Guttman
and Wilks [1965])

2m-1
8 =1 - e—M(l—u){

i=o
provided that B and M are large.

Suppose one wishes to determine an estimate of the TIT
for f'(x) at some point xp corresponding to an a = .98 for
a sample of M=400 devices. Assume that one wants to be at
least 95% sure that this estimate will actually contain at
least 100(1-0)% of the f'(xp) distribution. By trial and

error one may verify that in this case m should be equal to
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2. That is, the second highest and second lowest sample of
f'(xp) can be used as the TL's. There are obviously other
ways to use (3.31), but in any case one must use some in-
tuitive judgment in deciding the ultimate values of a and B.

The estimation techniques that have been just indicated
should serve only as examples of how to practically acquire
the statistical data required by this section's developments.
There are other applicable approaches to be found in the
general area of estimation and other statistics. It is
clear that an initial concerted measurement effort is need-
ed to provide one with the required statistical information.
The benefits of such an investment is realized when many
thousands of devices must be later tested to determine their
device functions.

A second central requirement of the general statistical
approach of this section is that the derivative of the
device function can be accurately measured. In some situa-
tions the derivative may be difficult to measure since one
needs to measure the device function at nearly equal values
of x. When there is an accuracy problem, it may be impos-
sible to obtain the required statistical information. The
reader is advised that it is assumed that accurate measure-
ments can be made, although possibly at a high economic
cost. This cost can result from expensive instrumentation,
time-consuming calibration and operator intervention, and

‘the amount of time to perform the measurements themselves.



For example, high accuracy analogue measurements require a
larger conversion time when analogue-to-digital converters
are employed in the measurement. It is assumed that the
initial high-cost statistical data gathering effort can be
justified by a subsequent savings in the complexity and the
increased throughput of production and field testing systems.
The initial testing effort might involve hundreds of devices
while production testing may involve tens of thousands of
devices.

In conclusion of this section, it is seen that several
new techniques have been developed that are potentially use-
ful for device testing applications. By providing statisti-
cal bounds on the device function f(x), the number of meas-
urements required to characterize a particular device may be
reduced, in some cases, from the number required by conven-
tional methods. This reduction is seen to result from the
incorporation of statistical information not utilized by
conventional techniques.

If one examines the techniques used in practice to
characterize a device function, it is possible to conclude
that these techniques are often arbitrarily devised. Usu-
ally, manufacturers test devices by measuring the device
function at a few "typical" points along the device curve.
Acceptance of the device corresponds to these functional
values lying within "guaranteed" bounds. These bounds often

result from the manufacturers' knowledge that a certain
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per cent of the devices produced will meet these limits.
When the devices are to be used under non-typical conditions
or over a variety of conditions, a user must sometimes hand
pick devices out of a lot by subjecting the devices to more
informative tests. In actually determining the function for
a device, one may often sample the device function at close
intervals. The closeness of samples is determined by try-
ing different spacing to determine the appropriate spacing
that gives sufficient accuracy for the user's purposes.

Once this is done, curve-fitting techniques may be applied.
Except for the determination of spacing and the selection of
an interpolation formula, statistical information is not
used.

The general approach developed in this section is
therefore a departure from conventional practices. These
new techniques not only provide a statistical bound on f(x),
but more importantly provide insignt into the basic problem
of generating testing procedures. An indication is given of
what statistical information to gather and how to organize
it. When the continuous bounds of Theorem 3.6 are construc-
ted between deterministic measurement points, a piecewise
bound on f(x) can be constructed which is independent of any
assumption of order of approximation for f(x). Should the
statistical bounds extend into a user defined unacceptable
region, one may make additional measurements of f(x) in

these regions until the bound on f(x) is totally within the
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acceptability region or else the statistical bound is total-
ly outside this acceptability region for some interval of x.
This latter condition would indicate that the device should
be rejected.

There are obvious variations on the applications of the
methods developed in this section. These variations prima-
rily concern where to make additional measurements of f (x).
It is seen that by working with statistical bounds, there
can be some basis for a testing procedure. It is also obvi-
ous that the number of measurements required to characterize
f(x) will be determined not only by where each measured
value lies but also the tightness of the acceptability re-
gion. In this sense, the proposed general approach is seen
to be optimal and adaptive in that measurements are made
only when and where it appears statistically necessary. The
suitability of a statistical bounding method depends on the
particular application, whether the cost of making measure-
ments on devices is a critical problem, the feasibility of
gathering required statistical information, and whether the
required computations can be mechanized economically in an
automatic testing system.

The techniques developed here will be further developed
to apply to the situation in which polynomial and transcen-
dental interpolation is known to be a suitable method of
characterizing a device function. This extension will be

investigated in Chapter 5. In addition to the statistical



data utilized in the preceding techniques, the prior infor-
mation regarding order of approximation and bandwidth prop-
erties associated with the device function will be incorpo-
rated into the process of obtaining statistical bounds on
f(x).

3.3 Discussion of the Bounding Algorithm and Some
Alternatives

In the last section, a need was seen to arise for a
convenient way in which to obtain a TI for a linear combina-
tion of independent random variables. In Chapter 5, this
need will again arise from the techniques to be developed
there. Moreover, in many other situations, one is faced
with obtaining a bound for a physical quantity which can be
represented by a linear combination of independent, statis-
tical quantities. When the statistical distribution for
these independent quantities is known explicitly or when
tolerances (TI's) are known for the quantities, the availa-
bility of a convenient method of determining a statistical
bound on the linear combination from the individual statis-
tics is seen to be of importance.

In this section, conventional approaches to statisti-
cally bounding linear combinations of independent RV's will
be briefly considered. The reasons why such techniques
should be avoided in some situations will be considered. As
an alternative to these conventional approaches, the bound-

ing algorithm previously defined in Defintion 3.5 will be
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discussed from the standpoint of practicality. The need for
this algorithm will be further defended because of the re-
quirements of its application made in the last section and
its additional use in Chapter 5. In addition to the bound-
ing algorithm, several alternative algorithms that also use
the direct combination of TI will be compared to this first
algorithm. The basis of this comparison will be the ex-
pected performance of these algorithms in obtaining practi-
cal statistical bounds on device functions.

Consider the linear combination of independent RV's
N

Y =] C.X, (3.32)
i=1

where the Ci's are constants and the Xi's are the RV's. 1In
general, to determine a TI for the RV, Y using a convention-
al approach, one must first determine the pdf of this varia-
ble. If the pdf's of the RV's Xi are known, then one must
usually perform a weighted N-fold convolution of these
pdf's.! That is, if g; (u) is the pdf for X, then the pdf
of C, X, is gi(%i)/ci and the pdf of Y denoted gY(u) is

(Papoulis [1962])

IThe exception to this is if each of the Xji's are normally
distributed, with mean uy and varianﬁe oi. In this case, Y

is normally distributed with mean = Ciui and variance =

s i)
2 .
1§1Ci 0% (Bowker & Lieberman [1964])
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_ {gl(u/Cl)*gz(u/Cz)*...*gN(u/CN)}
N

i1 161

(3.33)

gY(u)

where '*' denotes the convolution operator. Equation (3.33)
normally requires an N-fold integration. The computation of
gY(u) is more conveniently accomplished by Fourier Trans-
forms, since convolution in the real domain corresponds to
multiplication in the frequency domain. If the Fourier
Transform of gi(u), Gi(w), exists, that is

gi(u)++Gi(w) (3.34)

then one can show [Papoulis [1962])

u

and

gy(u)+I£lGi(Ciw). {3« 35)
The result of equation (3.35) indicates that one first deter-
mines the Fourier Transforms of the N, Gi(m), then scales
the transforms with the Ci’ next multiplies the N scaled
transforms together, and finally performs an inverse trans-
form to obtain gY(u). Since the operation of transformation
involves integration which must be performed numerically if
computation is digital, one resorts to the various Fast
Fourier Transform (FFT) algorithms to avoid large computa-
tional time (Cooley, Lewis & Welch [1967]). Such algo-

rithms are easily mechanized but require both appreciable



storage space and computational time allocations in a mini-
computer testing system. Special hardware FFT Drocessors
are becoming available so that numerical convolution is not
an unreasonable approach in some situations.

There are, however, several reasons for avoiding the
above direct approach even when a FFT processor is availa-
ble. As was mentioned in the last section, it is consider-
ably more difficult to obtain the entire pdf of a device
function or its derivative than to obtain an estimate of
TL's. Further, since the distribution information must be
determined at many values of the input variable, a consider-
able amount of memory would be required to store the statis-
tical information in the form of pdf's. For example, to
store a pdf with 256 point resolution, at 100 different
values of the input variable would require 25,700 words of
memory (including the values of the input variable), while
to store the TL's corresponding to three confidence levels,
at 100 input variable values would require 700 words.

A greater disadvantage of the direct convolution ap-
proach is seen to exist when one wants to vary one or more
of the "constants" Ci' When statistically based polynomial
interpolation is considered in Chapter 5, the Ci's will be
deterministic functions of the input variable. In order to
obtain bounds on f(x) over an interval of this variable, the
Ci's will be seen to change continuously over this interval.

Where convolution is used to obtain a TI for Y in equation

21



(3.32), all the transformation operations, transform scal-
ing, multiplications, and inverse transformations would have
to be performed as many times as there are points at which
the bound of f(x) needs to be known. Thus, direct use of
pdf's even with a high speed FFT processor could easily re-
sult in prohibitive computational time.

Still another disadvantage of working directly with the
pdf's is that of aliasing error (Hamming [1962]). This
error occurs when the FFT is used for transforming a func-
tion which is not ideally bandlimited. The functions being
transformed are pdf's and they rarely have ideal cut-off
characteristics. 1In fact, some distributions such as the
Cauchy distribution have non-finite second moments. Thus,
some aliasing error will usually occur. The most pronounced
effect of this error occurs in the "tails" of gY(u). Since
one usually picks a confidence level close to unity for
practical applications, the TL's obtained by integration of
gY(u) are very sensitive to small variations of the area
under the tails of gY(u). Thus, even a small amount of
aliasing error can be disasterous in determining the TL's.

It is therefore evident that a method of directly com-
bining the TL's of the individual RV's avoids several impor-
tant problems that arise in the direct manipulation of
pdf's. Nevertheless, one needs to be aware of the general
characteristics of the pdf's corresponding to the Xi's since

such information is necessary in evaluating the approximate
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confidence level of the TI formed by the bounding algorithm.
In the next chapter, such evaluation considerations will be
studied in detail.

In determining a statistical bound on the device func-
tion f(x), one wants to be able to give some assurance Or
probability that f(x) actually lies within the bound. It
seems reasonable then that if a confidence level is to be
associated with the bound on f(x), and this confidence level
is only approximately determined, then this estimate should
be conservative. That is, the estimate of the confidence
level is only meaningful if it is a lower limit on the actu-
al confidence level for the bound on f(x). Therefore, a
requirement of any potential algorithm for combining TL's
is that one may claim a lower bound confidence level for the
TI that results from application of the algorithm. In par-
ticular, the conditions under which this minimum confidence
level can be claimed must be known.

The bounding algorithm (BA) of Definition 3.5 fulfills
the above requirement whenever the pdf's of the RV's of
equation (3.32) are linearly conformal.! 1In this case, if
the TI's of each Xi have a confidence level of o, then the
composite TI resulting from the combination of the individu-

al TI's via the BA has a confidence level of at least o.

!see Definition 3.6



The conditions of linear conformal pdf's are considered in
detail in the next chapter.

In addition to the preceding requirement, the BA has
other important advantages. This algorithm forms composite
TL's by effectively forming a linear combination (in the
algebraic sense) of the individual TL's. Therefore, the
expressions for the composite TL's bear close resemblance to
the RV equation (3.32). The contributions of the individual
TL values to the composite TL's are therefore functionally
independent. That is, the partial derivative of either of
the two composite TL's with respect to any of the individu-
al TL's is not a function of the other individual TL's. As
a result of the algebraic linearity of the BA, the inter-
change of deterministic data and statistical data is espe-
cially straightforward. 1In the last section, the construc-
tions of iterative statistic extrapolation were simplified
by the ability to consider the iteration as a recursive pro-
cess. The linearity also allowed the transition of the it-
eration to proceed from a discrete to a continuous process
via Theorem 3.6. When polynomial and transcendental inter-
polation is considered in Chapter 5, the algebraic linearity
of the BA will result in a relatively simple analysis of the
composite TI's.

Another advantage of the BA relates to its ability to
handle the situation in which the RV's of equation (3.32)

are not statistically independent. In order to analyze the



effect of statistical dependence, consider the N=2 case for
(3.32)

Y = Xl + szz' (3.36)

Suppose the two RV's are functionally related by

X, = R(Xl). (Ss37)

Corresponding to the confidence level a, suppose the TL's

for Xl are a, and bl’ al<bl. That is

pla;<X;<b;} = a. (3.38)
Consider the case where R is monotonic. Then if alfxlibl’
a,<X,<b, where

a, = min [R(al), R(bl)]

b2 = max [R(al), R(bz)]
and’

p{(a,<R(X;)<b,) | (a;<X <by)} = 1. (3.39)

For the constant C2 in equation (3.36), let

a; = min [a2 C2, b2 C2]

b3 = max [a2 C2, b2 C2].

Then it follows from (3.39) that

p{(a5<C, R(X;)<by) | (a)<Xy<by)} = 1, (3.40)
or in simpler notation

p{E,[E;} =1
where

E., denotes the event a,<C

2 3

'p{®R) | Ry} denotes p{(R) given that (R,)}
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and
E, denotes the event a;<X,<b,.
Then the joint occurrence of Eq and E2 may be combined as
a;tas<X,+C,-R(X;)<b;+bs. (3.41)
But
p{E; and E,} = p{EzlEl}-p{El} = l-a = o. (3.42)

Observe that if (3.37) had been substituted directly in
(3.36), the expression bounded in (3.41) would be the RV, Y.

The lower and upper limits correspond to the TL's obtained

by the BA under the assumption of Xl and X2 independent.
One may further observe that if
c, - PRX) 5 (3.43)
oX -
1
then az = C2R(al) and b3 = C2R(bl). In this case the limits

of (3.41) are the same that result from the direct substitu-

tion of al and bl in

Y = X, + C2R(Xl).

1

Therefore, the BA provides "worst case" TL's for X1 and X2
monotonically dependent. That is, for equation (3.38) true
and R monotonic,

p{a,+a;<v<b,+bj}>a. (3.44)

1
Further, for the situation of (3.43),

p{al+a <¥<b +b3} = a. (3.45)

3 1

It is possible to generalize the preceding discussion into

a Theorem.
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Theorem 3.7 Given the RV equation

N
Y = X, +.§ C, "X, (3.46)
i=2

in which the Ci's are deterministic constants. Let the TI

for Xl be given for the confidence level a, such that

< =
pl{a;<X;<b;} = a.
If the RV's, Xi are monotonic, deterministic functions of

the RV, Xl such that

Xi = Ri(Xl)

then the constants

a; = min [C,*R:(a;),C:*R; (by)]
i i il i i1 (3.47)
determine the TI's for CiXi such that
p{aiicixiibi} = q for i=2,...,N. (3.48)
Furthermore, Y may be bounded by
N N
ay = ] a;<¥< ] b;=by (3.49)
i=1 i=1
such that
play<¥<b, }>a.

Furthermore, if

BR(Xl)

Cl —5-}—(1——'—'2_0 for all i=2,...,N

then p{a,<¥<b,} = a.

The bound of (3.49) corresponds to the CTI formed by the BA.



The proof of this theorem is a straightforward extension of
the N=2 case by induction. All that one must recognize is
that (3.48) monotonically maps the TI for X, onto each of
the TI's for Xi via Ri'

Consider the effect of a different situation of statis-
tical dependence on the performance of the BA. In this sit-
uation, a linear combination of RV's contains some variables
that are linear functions of one of the other RV's in the
combination.

X X eeerX are sta-
1,1’ 72,1’ "N, 1

tistically independent and have pdf's which are linearly

Theorem 3.8 Suppose the RV's,

1

conformal. Define another set of RV's as

X, X + L

1,3 Di,j i1 j=2,...,k, (3.50)

i, 3" i

where the ki's are non-negative integers, and the Di .15
4

and Li . are constants. That is, the Xi .'s are linear
14 4

functions of X, Then the pdf's of all the Xi . are lin-

1,1° ’
early conformal. That is, given the linear combination
N Ki
Yy = C: Ko (3+52)
lzl Jz'l llj llj

where Ci . are arbitrary constants, and given the TI's for
’

each of the Xi 3 such that

’

pila <X b, .} = &, i Ls5ssspN (3.52)

s . .<Db,
i1,)J)— 1,)— 1,]

u

o
N
~

'That is, the collection of pdf's is linearly conformal.
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one may apply the BA to (3.51) without the prior knowledge
of (3.50) and obtain a CTI for Y. The probability that Y

lies in this CTI will be at least a.

The following lemma will be useful in establishing the proof

of Theorem 3.8.

Lemma 3.9 If the variable X is bounded by

aiXib (3.53)
then for any constants Ci’ i=1l,...,N
N N N
)} min[a-C,,b"C;1<X-} C;<} max[a-C,,b:C;]. (3.54)
i=1 4 j=1 *q=3 SRR Ao

Furthermore, if all the Ci's have the same sign, then

N N

Y min[a-C,,b.-C.] = min[X-] c, ] for Xela,b] (3.55a)
i=1 * . i=1

and

N N

2 max[a“C.,b-C.] = max[X-Z C.]1 for Xela,bl] (3.55b)
=1 oot i=y &

Proof The proof of (3.54) can be divided into two separate
parts. Each part may be accomplished by induction.

Part 1. [Left-hand side of (3.54)]
For the N=1 case, consider that from (3.53) the minimum

value of X-Cl is

min[a-C b-Cl].

ll
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Therefore, for N=1, the left side of (3.54) and equation
(3.55a) are satisfied.

Suppose
N-1 N-1
) minfa-C,,b.C;1<X-] C.
i=1 i=1

is true. To each side of this inequality add X-C Then

N
N-1 N-1

L minfa-C,,b-C;] + X-Cy<X-] C,.

i=1 i=1

But, from the case for N=1

mln[a-CN,b-CN]iX-CN.

Therefore
N N
) min[a-C,,b-C,]<X-} C,.
i=1 * il =1

Part 2. [Right-hand side of (3.54)].

Replace "min" by "max", and "<" by ">", in part 1. Then
N N
g max[a*C,,b-C 1>X-] C..

i=1 i=1

To prove (3.55), let all the Ci be positive. Then

mln[a'Ci,b'Ci] = a-Ci,1=l,...N
max[a-Ci,b°Ci] = b-Ci,i=l,...N
and
) )
min[X-) C.] = a.) C.
i=1 * i=1
N

Il
o

max[X:Z c,] :
i=1 i=1
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Then for positive Ci's, (3.55) is proved. Similarly, let-
ting the Ci's be all negative completes the proof of the

lemma.

Proof of Theorem 3.8 Consider the linear combination of RV's,

il

Y =
i

c
1

i,l.Xi,l (3.56)

Il >~

From the assumption that the pdf's of xi,l are linearly
conformal, and using the TI's indicated in (3.52) for the
j=1 case, it is required that, for any Ci,lls’

N - N N i
p{E;} = pizlairl§glci,1°Xi,l§£lbirl}zq’ (3.57)

where the notation

Y _ .
a; 1 = minfa; 4-C; 4,by 1°Cy 4]
(3.58)
Y —
by 1 = maxla; ;-C; 1,b; 4-C; 4]
has been adopted. Additionally, define
’\I : 1 - . - )
a;,5 = minfa; 4-C; 3°D; 4+P; 1°C4, 5704 4]
(3.59)
r\’ -—
" = max[ai'l Ci,j’Di,j’bi,l'Ci,j Di,j]'

Since the values of the Ci l's are unrestricted, substitute
14

o

k.
. Zl )
; = C, + C. .-D. . =

i,l o | j=2 i,j “i,3J j=

i
c S
1 i3

i,J

where D. = 1 for all i. The event E
i,1l 1

be rewritten as

in (3.57) may then



k.
n* 1
a.

ll

X

< i . U3
=§=1 l'lj’zl i,] 1,]— i

i

I~

Il o~>2

Il l,l

i 1

where, from the definition of (3.58), it is required that

k. k.
3 inta, -} TC. oDy ab -1 €, «D .l
a. = min[a. . . .*°D., .-b. .- . .+D. .
s 1P B l’li=l 5=1 i,3 71,3 1,1i=l j=1 i,j 1i,)
and
o N %y N Xi
b. = maxl[a. . C. .-D. .,b, . C. .-D. .1.
i,1 [ l'liz—l ]‘Zl 1,3 i,3° l'lizl le i,] 113]
Observe that
* l
) = min[X. y C. .-D, .]
1;1 1,1.55 71,7  1.]
j=1
and ki
n*
bi,l = max[Xi’ljlei,j.Di,j].

Now recalling Lemma 3.9, it must be true that

kj

jzlmln[ai,l"Ci,j‘Di,j"bi.l i,5°P4,3
and that

k.
1

jzlmaX[ai,l"Ci,j'Di,j"bi,l' i,5°P1,3012P1,1

Using the definition of (3.59) in the last result, one

obtains

102

N *
C. .*D, .< ) B, (3.60)
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Thus the event El that was rewritten as (3.60) implies that

R I
a. < X.
i=1 §=1 3732 el

(3.61)

Io~—m w
(@]
lw)
4

Adding the quantity

N k

I,

1,4° i j,L. = 0 for all i
i=1 j=1 g

1,1

to (3.61) and factoring the middle expression yields
v K Ky
I ) (a; .+L, .-C ) X X C, +(X; 1Dy 4L, L)<
i=1 j=l 1,7 1,] 1,] 'i‘ 1 J 1 1,] 1, 1,] 1,] —
(3.62)
N K
if 381 TE37LS T4
But from the definition in (3.50) and from Di 1
14
L, .,=0, the event E2 finally can be written as

i,1l

! ra } P w1
(s 2L 2°C. L)% C. .

i=1 j=1 b3 R T3y Ry i3 Tiidpny g4

=1 and

{3.63).

Consider the result of (3.63). The middle expression is the
linear combination of (3.51). From (3.50), (3.52), and

from (3.59)

n n
a, .+L. .-C. .<C., .-X. .<b. .+L. .-C. .
1,7 i,] i,]J— 1,] 1,]— 1,] 1,] 1,7

represents the TI for Ci .-Xi 3 that is implied by

4 14

1 l— i, l—bl 1

It therefore follows that (3.63) represents the CTI that

‘results when the BA is used to combine the TI's of the Xi

I
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of the linear combination of (3.51). Note that no restric-
tions were placed on the values of C. ., D. ., and L. .
1,] 1,] 1,]
other than that which the identity X. . = D, .-X. .+L. .
i,J 1,7 dpd i,

for j = 1 obviously requires.

Finally, the event E2 in its final form corresponding
to (3.63) is implied by E;. But since

p{E;}>a
it must also be true that

p{E,}>a.

This concludes the proof of Theorem 3.8.

Theorems 3.7 and 3.8 indicate that the BA will produce
a CTI, for a linear combination of RV's, which is in many
important cases, either a conservative estimate of the ac-
tual TI for the sum, or is equal to the actual TI. In par-
ticular, Theorem 3.7 indicates that when all the RV's are
monotonically related to each other, the BA provides either
a conservative statistical bound or the actual TI with re-
spect to the RV linear sum. Theorem 3.8 indicates that when
the statistical relationship between any two RV's is that of
linearity dependence, the BA again provides a conservative
combination of the individual TI's.

The last two theorems have important significance for
applications of the previously developed techniques of this
chapter. The values of a device response for different in-

put values are related through the device function. Even
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for a complex function having many degrees of freedom, there
is some degree of statistical dependence between two differ-
ent function values of the same function. If these two
function values are treated as RV's and subsequently com-
bined in a linear combination, then the dependence of one RV
on the other can be important. 1In determining the TI for
the linear combination, one may wish to apply the BA. It is
not sufficient to simply establish the linear conformity of
the pdf's for the two RV's, since this property is concerned
with the situation in which the RV's are independent. But
from the last two theorems, it is seen that even for the
extreme case of linear dependence between the two RV's, the
BA results in either a conservative estimate of the CTI or
else in the TI that would result from direct use of the
dependency relationship.

Consider the following simple example. Suppose the two

RV's X, and X, are combined as

1 2

Y = Xl + X2

and suppose X, = 2Xl. Then if the a level TI for Xy
corresponds to

p{-A<X <A} = a (3.64)
it must be true that

p{-2A<X <2A} = a. (3.65)

2
One may conclude by inspection that whether the BA is used

to obtain a CTI on Y using (3.64) and (3.65), or X2 = 2Xl

is substituted directly as
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Y = Xl + 2Xl = 3Xl,

the TI computed for Y is (-3A, 3A). Suppose Xl (and

therefore XZ) was normally distributed. Then by naively
assuming Xl and X2 independent, the TI for Y could be di-

rectly computed (Bowker & Lieberman [1964]) as

|| < /a2 + 4a% = A /5 < 3A.

This result is an underestimate of the true TI for Y.
Several alternative algorithms that combine TI's di-

rectly will now be considered. The first is the sum of

squares (SS) algorithm. This algorithm is based on the

linear combination of independent, normally distributed

and the Xi's are nofmally distributed and independent and
if the TI's for the Xi's correspond to

p{aiixiibi} = q
then the TI for Y, [ay,by], corresponds to (Bowker &

Lieberman [1962])

N //7N
p{lY—%iElCi(ai+bi)|§% izlci(bi'ai)z } =

The SS algorithm is important since normal distributions
are frequently encountered in practice. However, as was
seen in the simple example just given, when two or more of

the RV's in a linear combination are dependent, the SS
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algorithm may give an underestimate of the actual TI for the
RV sum. In view of this drawback, the SS algorithm must be
used with caution, and cannot be generally applied.

There are a number of other disadvantages in using the
SS algorithm. In discussing these disadvantages, it is use-
ful to consider the general class of algorithms which form
TI's corresponding to

N N

|Y—l~5'z C, (a;+b,) 'i%(.Z G
i=1 i=1

k ky1l/k
;(by-a)”) /¥ for k>0. (3.66)

It is seen that the SS algorithm corresponds to the k=2 case,
while the BA corresponds to the k=1 case. Note that k is

not restricted to an integer value. Except for the k=1 case,
the algorithms of (3.66) compute TL's for Y which are non-
linear functions of the individual TL's, aj and bi' Because
of this nonlinearity, these algorithms do not allow the
straightforward construction of statistical bounds that is
possible with the BA. For example, the ability to obtain
continuous bounds on the device function by using a differ-

ential extrapolation interval (Theorem 3.6) would be impos-

sible. Equation (3.20) would become
N-1
£ (x) < (x ) Hiahx- ] [D(xj)+alx;)]+
= (3.67)
N-1
Ax kl1l/k
7 izo(b(xl)—a(xi)] /

Since the bound on f(xN) is no longer a linear function of

the a(xi) and b(xi) values, it is not possible to make the



transition between the summation and integration operations
as before. 1In fact, if one considers the case where

C .nib(xi)—a(xi)icm

id for xogxixr, then using (3.21), the

ax

value of the second expression of the f(xN) upper bound is

between

(%% ) "Coin

N-1
'N(l/k)_li %§.{:Z (b(xi)—a(xi))%}l/k

1=0

(Xr_xo)'c

— e MAaX
2

But for k<1, N+« implies that the bound on f(xN) is infinite

g (1/K) -1

while for k>1, it is implied that

X X
r
b (x) +a (x) b (x)+a (x)
f(xo)+xf pRAEL Sl dxif(xN)f_f(xo)+xf 2xizal®) ) ax.
o o

But this second result corresponds to a zero width TI which
can only correspond to probability of zero. Therefore, it
is not possible to obtain a meaningful continuous TI.

It appears then that the class of algorithms given in
(3.66) are less suitable than the BA for the techniques
developed in the last section. In Chapter 5, it will be
seen that the BA is also more suited to the techniques
developed there. In Chapter 4, the algorithms of (3.66)
will be considered in terms of the confidence level that may
be associated with their TI estimates. This treatment will
assume statistical independence of the combined RV's. It
will be shown that the k=2 case (SS algorithm) may be used

as a minimum TI estimate in certain cases. Finally, it is

108
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easily seen that for k>1, the TI's given by the algorithms
may be underestimates of the actual TI when the combined
RV's are dependent. If k<1, the TI obtained will be more
conservative than the BA and will therefore result in overly
pessimistic bounds.

There are other possible algorithms that may be used to
directly combine TI's. For example, one may select the TI
with the maximum width from the combined RV TI's, and then
assign an overall TI for the linear sum as some function of
this maximum value. Algorithms such as this one result in
either overly pessimistic bounds or else bounds for which
it is impossible to assign a confidence level.

In conclusion of this section, it has been shown that
the direct combination of TI's is a more practical approach
in obtaining statistical bounds on linear combinations of
RV's. The BA was shown to possess certain advantageous
properties that were found lacking in several alternative
algorithms. When some of the RV's to be linearly combined
are statistically dependent, the BA was proven to yield
conservative TI estimates, that in certain limiting cases
approached the actual TI of the linear combination.

In the next chapter, the property of self-linear
conformity introduced in this chapter will be formally de-
fined. A detailed investigation of this property will be
carried out. An important class of pdf's will be shown to

"possess this property for any size linear sum. A heuristic



110

analysis will allow other pdf's to be analyzed to determine
if they are self-linearly conformal.

In the next section of this chapter, a special problem
is considered. This problem is concerned with the combining
of statistical data with deterministic device measurements,
as before. However, in this case, one is concerned with
determining the variations of process parameter effects over
the area of a monolithic circuit, rather than determining
the functional variations with input changes. This appli-
cation topic is included since it represents a novel imple-
mentation of a conventional technique to combine statistical
and deterministic data.

3.4 Special Problem This section will consider a special

applications problem which arises in the testing of mono-
lithic circuits. This problem differs from the general func-
tion testing problem considered in earlier sections and to be
considered in later chapters. Here one is primarily con- .
cerned with monitoring the variations of the fabrication pro-
cell parameter effects over the physical area of the mono-
lithic circuit. These effects of the process parameters

are called "effective parameters" in order to distinguish
them from the process parameters themselves. Because of the
extremely small physical size of the circuit and since the

circuit elements cannot be isolated for the purpose of

making measurements, the number of points at which a circuit
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can have measurements of the effective parameters is
limited.

While the problem of this section differs in terms of
what is to be determined, this problem is concerned with the
same underlying goal of other sections. That is, a device
is to be characterized by a limited number of deterministic
measurements. As will be explained, there is a cost associ-
ated with the number of such measurements used to test a
particular device. The approach will be to combine prior
information (statistics) with the deterministic measurements’
made on a particular device in order to obtain a revised
estimate of the distribution of the effective parameter
variation over the circuit area. This section differs from
other sections in that only existing mathematical techniques
are required. The implementation of these techniques,
however, involves a new approach to statistics gathering.
This approach introduces the concept of a "test wafer",
described below (Herman, et al [1973]).

In order to define the problem of monitoring process
parameters in detail, it is necessary to acquaint the reader
with certain aspects of monolithic circuit fabrication.
These devices are fabricated on disks called wafers. The
wafer contains many devices as shown in an array. The
dimensions of a single circuit or "chip" is usually less
than a tenth of an inch square, although large-scale-

integration (LSI) circuits may be somewhat larger.
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Connections to the chips are made by wires bonded to the
chip at points of the chip called "lands". These lands must
be several times the size of the circuit elements due to
practical limitations of present bonding techniques. Be-
cause of the relative large size of these contact points,
the number and placement of such areas is constrained. Cir-
cuit probing at points other than the lands is possible by
manual microprobing equipment, but automated probing at
points other than lands is not presently feasible. Higher
density integration achieved by such technologies as MOS
integration aggrevates the probing limitations. Even if
probing were not such a severe problem, making most types of
parametric measurements at a certain region of the circuit
requires that an isolated circuit element located in this
region be accessible for the measurement.

The significance of effective parameters for device
testing requires some explanation. The many stages of mono-
lithic circuit fabrication involve process variables or pa-
rameters. These parameters correspond to the controlled
conditions of the process such as temperature, duration of
the process, and chemical composition of the diffusion ma-
terial. Each parameter has some effect on the properties of
the monolithic circuit elements. Since all of these ele-
ments for each of the devices on a wafer are fabricated in
the same processing sequence or "heat", the process param-

eters for these elements are the same. The differences
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between one element and another result from masking tech-
niques in which specific elements are selectively subject to
a particular process step while other elements are masked
out. While the effect of a process parameter is fairly
uniform over circuit elements subject to the same conditions,
some variation of this effect is inevitable. While the va-
riation of the effective parameter is negligible over very
small circuit areas, it can become quite significant over

the area of a LSI device. With the present trend of increas-
ing scale of integration, the physical area of future de-
vices may be many times that of the largest devices current-
ly available.

Recent efforts in improving integrated circuit relia-
bility have led to more critical evaluation of the entire
manufacturing process. Schroen, et al [1972] indicates that,
"a significant fraction of device failures are due to de-
vice parameter changes caused by changes in dopants, im-
purities, or defects in critical areas superimposed on broad
parameter distributions."

If the integrated circuit process technology is to be
controlled, there must exist means for monitoring the effect
of the process parameters. It is possible to correlate
measurable circuit parameters and the parameters of the fab-
rication process (Schroen, et al [1972] and vanBeek [1972]).
For example, diffusion characteristics control transistor

properties such as gain and leakage currents. By measuring
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the electrical characteristics of a single transistor, it is
possible to infer what the process parameters were which pro-
duced it. Of course, such an inference corresponds to the
wafer region at which the transistor resides.

Techniques for the process control of monolithic cir-
cuit quality and reliability at the wafer level have been
studied and implemented by many research institutes as well
as by circuit manufacturers (Baron and Myers, Miller [1969],
Herr [1968 a, b], Anon (Westinghouse Corp.), and Schegel).
The control techniques vary from a single test transistor
and capacitor on each chip to several such "test patterns"
on a wafer. The current approach is to use the parametric
measurements made at a few test sites as an indication of
the process parameter effects over the entire wafer. That
is, if all of these measurements fall within acceptable
ranges, the wafer is accepted. Otherwise it is rejected.
The acceptable range of each parameter is intended to re-
flect the range within which the circuit elements will
operate satisfactorily and within which the failure
mechanisms will be minimized.

Since the test elements require levels for test con-
nection, the number of test sites that can be placed on a
chip must be minimized. Due to topology constraints, it is
not practical to place the test elements other than at the
circuit perimeter. As the size of the circuit becomes large,

the use of test transistors to monitor effective parameters
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becomes less meaningful. One cannot determine spatial
parameter variations using existing practical techniques.

In order to overcome the usual difficulty of accounting
for significant parameter variation over the area of a mono-
lithic circuit, a statistical approach will be taken. Prior
knowledge of spatial parameter variations will be combined
with the information acquired by testing the few test sites
that can be economically placed on the production wafer.

The concept of a "test wafer" will be described shortly
which will enable a practical gathering of the required
prior statistics.

The statistical approach to be considered involves de-
termining the statistical distribution of the inferred
effective parameter for different points on a wafer. That
is, at some point on the wafer, it is assumed that electri-
cal measurements made on a test element enable one to infer
what the process parameter value was during the wafer fab-
rication. This inferred value, referred to as the effective
parameter value, is considered to be a RV, X. The statis-
tical distribution for X is defined to correspond to any
point on the wafer. It is assumed that such measurements
are made "far enough" apart on the wafer such that each
effective parameter value can be considered to be an in-

dependent sample of the RV, X. Furthermore, X is assumed to
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be normally! distributed with known variance o§ and unknown

mean ux. It is also assumed that u considered as a RV,

xl

has a priori density function which is normal with mean My

and variance 0&. The physical interpretation for these

statistics is that many wafers are produced under the same

process conditions. Corresponding to each of these wafers,

2

X is distributed on the wafer with the density parameters Ox

and Hy While the variance 0§ is assumed to be the same for

each wafer, the mean is allowably different for each wafer.

For many wafers, if the actual mean is somehow determined,

2

X of the wafer

one can estimate the mean My and variance ©

mean, .

At each of N test sites on a particular wafer, the

values of X, X i=1l,...,N corresponding to these test sites

2
M’

with the N measurements, the distribution for X on the

are determined. Using the statistics 02, o and My along
measured wafer is to be estimated using Bayesian analysis
(Morgan [1968], Crellin [1972]).

As a first step, the prior distribution for Hy can be
revised to reflect the condition that the N observations
(measurements) have been made. Using a result of Breipohl
[1969] based on Bayes Theorem, the posterior distribution of

My is again normal with respective mean and variance

!Gaussian-normal density function.
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N

2 2

. +

' cMizlxl MmOk
M,N = - - (3.68)

N o2 + of

o2 o2

o2 = ik K (3.69)
M,N No2 + g2

M X

where the second subscript denotes that these statistics are
conditional on the N observations. One may note that as N-o
N

lim Z Xi/N =
N#+o i=1

limu

Now M,N ~ My

which is the actual mean for X on the measured wafer.

Similarly
lim o& =
N> N

as one would expect.

Breipohl's result can be carried a step further. It
has been stated that the distribution of X is normal with
known variance o§ and unknown mean My e Therefore, since
knowing the value of My determines the distribution of X, it
is clear that one can consider this distribution as being
conditional on My That is the normal pdf for X conditioned
on jy = 8 is (Bowker and Lieberman [1964])

(x]0) = —E— exp [-(x-0) 72 02] (3.70)

g
X|uy (2m o2)*

where x is the usual pdf variable. That is
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a
p{Xia]px = 9} = [ gXIUx (x]8) dax.

From (3.68) and (3.69), the posterior pdf of Hy is written

-(0-y, )72
9, (8) = ————l;——— exp { ?’N b (3.71)
X (27 OM'N) 2 OM,N

To obtain the absolute density function for X, one inte-
grates the product of (3.70) and (3.71l) over the range of 6.

Then the absolute density function is

)

(6-y 2
L (o [x=0) 2+ "M/N° Ty (3.72)

[ee]
g,(x) = [ 5=———— exp
X ~ M0y, N0 o2

2
X oM, N
If the terms in the exponential are expanded, put over a
common denominator, then collected as coefficients of 62,

!, and 6°, and then finally normalized with respect to the

82 coefficient, the exponential expression if (3.72) can be

written
2_ 2 2 2 2 2 :
[e 2y NOx*TYOoy )0+ Y °M,N+OX“M,N)]
2 2 2 2
exp{-%. (Ox*oy N (og+opy, x) }. (3.73)
2.2 2 2
[ogom, v/ (Ox oy, N !

The expression of (3.73) becomes upon completing the square

(of the quadratic)

2 2
My, n9%1Y%M, N

[6-( S )1°? \
exp{-%. 0X+0M,N }.exp{—%.[y—uM,N] }. (3.74)
[°§°§,N/(°§+0§,N)] [og+oy, ]
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The second exponential of (3.74) contains no 6 terms and can
be taken outside the integral of (3.72). One notices that
the first exponential of (3.74) will become a Gaussian-

normal pdf if it is divided by

L

[2m02 /(o2 +02 )1.7° (3.75)

XMN M,N

But the integral of a Gaussian-normal pdf over the =-®<f<»

interval is equal to unity. Therefore (3.72) is
[2moioZ /(0X+o

)17
- X M,N M,N B _ 2 2 2
gx(y) Z"OM N .exp[-%(x uM,N) /(0X+OM'N)]
14

which may be reduced to

1

[2n(ox+oM N)]2

This result shows that the estimated distribution of X is

gy (¥) = cexp =% (x=yy ) */ (og+og 1) 1.(3.76)

normal with mean uX,N = UM,N given by (3.68) and with

variance

°>2<,N = op + ofd'N. (3.77)
where GM N is given in (3.69). Note that as the number of
observations increases, 0§,N approaches 0§ while the My N

approaches the sample mean of the N observations.

In order to use the result of (3.76), the statistics

o§, 0&, and u, are required. It has been stated that o§
is assumed to be the same for all wafers. This claim can

be defended by considering the manufacturing process of the
wafers (or some equivalent). Consider that this variance

represents the spread of the values of X for points over a
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particular wafer. Thus o§ corresponds to the variation of
the effective process parameter over a wafer. It seems

reasonable that this variation should correspond to the
uniformity of environmental conditions within the chamber in
which the wafers are processed. The uniformity may be af-
fected by wafer size, the sequence, and nature of the process
steps. Since the process parameters are closely maintained,
the uniformity of parameter effects over a wafer should be
virtually constant for all wafers subject to the same in-
tended conditions. The variation from wafer to wafer and
consequently from heat to heat are more likely to be char-
acterized by the variation of the mean, Hyr from wafer to
wafer. This last variation, while small, is significant in
its effect on the monolithic circuits produced. By assum-

2 constant, one neglects the second order effects of

ing oy

the effective parameter variations.

In view of the limited number of measurements that are
possible with the "production wafer" containing the mono-
lithic circuits, it is somewhat questionable how accu-
rate the estimates of oi, Uy r and 0& can be obtained using
only such measurement information. It is proposed here that
a special wafer called a "test wafer" be used. This wafer
is to entirely consist of test patterns or elements that are
presently placed in limited quantities on the production
wafers. The idea is to place such elements as closely to-

gether as possible in order to determine X at as many points
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as possible. Using these test wafers, one could achieve a

vast improvement in the estimate of o§

that the number of samples could be increased by several

simply from the fact

orders of magnitude. Using the average of the estimate of

2

Ogr One could determine a practical estimate of c§ to be
used in (3.76). Also, one would certainly be able to de-

2
X

Using the same measurements for the test wafers, the mean of

termine if the assumption that o2 is constant was reasonable.
X for each of these wafers could be determined. By testing

a reasonable number of the test wafers, one could obtain

2

estimates for the two distribution parameters oM

and My
corresponding to the wafer mean. One could observe whether
the assumption, that the wafer mean and the RV X are normal-
ly distributed, is a valid approximation. Finally, it is
clear that the test wafers are to be subject to the same
process parameters as the production wafers. It is also
suggested that after the initial data gathering effect in

which many test wafers are tested, one should continue to

occasionally include test wafers in production runs. In

2

this way, the prior distribution parameters OM

and Uy could
be continually revised to reflect any general shifts in the
fabrication process.

The specific manner in which the pdf of (3.76) is
utilized depends on the application. However, several gen-

eral statements concerning the method of implementing this

distribution can be made. One first realizes that the
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acceptability ranges for the electrical circuit element
parameters depend on the circuit configuration and the de-
sired performance of the monolithic device. The relation-
ship between these acceptability ranges and the circuit per-
formance is studied under topics such as sensitivity anal-
ysis and circuit analysis and design (Herskowitz [1968]).

As was pointed out earlier, there exists relationships be-
tween the circuit element parameters and the effective pa-
rameters. Therefore one can determine an acceptability
range for the effective parameters for each circuit element.

A further tolerance constraint on effective parameters
can come from a known correlation between these parameters
and the dynamics of various failure mechanisms. Investi-
gations such as Schroen [1972] have demonstrated that short
term parameter drift of test transistors resulting from
various step-stress conditions can be indicative of the
rates of some "wear-out" mechanisms.

Assuming that corresponding to each regular circuit
element, one can determine an acceptability range for each
effective parameter!, one must next consider how to compute
a measure of probability that a particular device on a
production wafer will operate satisfactorily. For this

device, the effective parameters for each circuit element

Tt is possible that the ranges for each effective param-
.eter may be interdependent. However, it will be assumed
here that the ranges are independently defined.
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must be within the required bounds. Thus for each circuit
element, one could integrate the pdf of (3.76), correspond-
ing to each of the effective parameters over the acceptabil-
ity range defined for the element and the parameter. Assum-
ing that the effective parameters can be considered statis-
tically independent, the product of each such integration
represents the probability that the circuit element will
operate acceptably. Finally, the probability that the en-
tire device is acceptable can be taken as the product of the
probabilities corresponding to the acceptability of each
circuit element. In order to simplify the analysis just
described, one may determine an overall acceptability range
for each effective parameter as the intersection of each of
the element defined acceptability ranges. Let the pdf
(3.76) for the ith effective parameter be integrated over
the overall acceptability range and call the value result-
ing from this integration p; - If there are ki circuit
elements that are dependent on the ith effective parameter,

the probability PD that the device is acceptable is

N
X . Kk,
Py —igl p; i. {3.78)

where Nx is the number of effective parameters measured. A
problem exists in the determination of the ki's due to the
nature of monolithic devices. Circuit elements for these

devices are distributed to some degree so that it is unclear

how many circuit elements the device has. Also, there is
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some degree of statistical dependence between the effective
parameters for adjacent elements. Thus in practice, one may
have to resort to a heuristic selection of the constants ki'
These constants may be called "density constants" since they
reflect the density of circuit elements in the device.
Having selected the values for the density constants,
one is then in a position to make a decision of whether to
accept or reject the wafer. Acceptance can be contingent on
m of a total n device on the wafer being acceptable. One
must select a confidence level a corresponding to this event.
Then the probability of at least m of n devices acceptable

must satisfy (Feller [1968])

n . .

n i n-i
izm(i) P (1-Bp) > a (3.79)
where (?) =n!/[(i!) (n=-1)!], and where Py is given in (3.78).

One may elect to avoid computing the values of p; re-
quired for (3.78) each time a wafer is tested. One observes

that the pdf given by (3.76) for the ith

effective parameter
is a function of the sum of effective parameter values de-
termined by the test site measurements [see (3.68) and
(3.69)] once N, 0§, oﬁ, and Wy are given. Corresponding to
an acceptability range for the effective parameter, one may
determine p; versus the above sum as a table of values.

Then one could use the table to determine Py for each wafer

in terms of the sum of effective parameter values determined

by the measurements made on the wafer test elements.
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Since the statistics o2 2, and, are determined

M’ 9%’ MM
from test wafer measurements, it is possible to apply this
information to testing wafers containing different types of
devices, providing the same process sequence applies to the
different devices. It is therefore possible to test the
feasibility of a device design prior to fabricating it. One
must simply determine acceptability ranges for the effective
parameters using a sensitivity analysis performed for the
device. Afterwards, the density constants ki are determined
for the circuit configuration. A Monte Carlo simulation
using the distribution of Hy and subsequently the distri-
bution function (3.70), may be used to generate the test
site effective parameter values. The acceptability of the
simulated wafer could then be determined as though measure-
ments had actually been made on the wafer rather than the
test wafer. By repeating the simulation many times, one
could determine the expected number of wafers that would be
accepted. This last result could be used to decide if the
device design was economically feasible.

Figure 3.6 shows the general steps that may be followed
in performing the above feasibility study and in gathering
the prior statistics required for testing. Many variations
of this procedure are possible. As mentioned earlier, the
specific procedure used will depend on the application.

Figure 3.7 is an example of a testing procedure for

production wafers. It has been assumed here that an overall
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Circuit
Design
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Redesign

Determine Acceptability Ranges for Effective
Parameters Using Sensitivity Analysis

¥

Determine "Density Constants" ki Using
Circuit Topology and Subjective Judgment

Adjust
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Design, Produce, and Test "Test Wafers".
Fgr Each Effective Parameter, Determine
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\

. 2 2
Using OM' uM' OM,
Parameter, Perform Monte Carlo Simulation.
Determine % Wafers Accepted

and ki for Each Effective

Probability of
Accepting a Wafer Indicate
Design is Economicall
Feasible?

Can
Process be
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Figure 3.6 General steps for performing a feasibility
analysis when test wafers are used to obtain parameter
distribution statistics for later production wafer testing.
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precedes process parameter phase of wafer testing procedure.
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acceptability range for each of Np effective parameters can

M ox

and My have been determined for each of the effective param-

be determined. It has also been assumed that ki’ o

eters. In this example, the number of test sites on the
production wafer, N, may differ from wafer to wafer. A
reason for this is that visual inspection of the wafer is
assumed to precede the determination of the test site param-
eters. Visual inspection is a common practice in which
"cosmetic" defects are visually detected. Such defects can
be scratches, isolated spots of foreign material, and mask
misalignment defects. The practice is to immediately reject
all devices having such defects. Since some test sites can
contain cosmetic defects, one would similarly avoid measure-
ments involving either test sites having defects or test
sites residing in the circuit area of defective devices.
Notice that acceptance of a wafer is contingent on the prob-
"ability that at least m devices are good out of n devices
containing no cosmetic defects. Thus, the effect of a
cosmetic defect in Figure 3.7 is to reduce the probability
of acceptance.

As a final consideration of the test wafer statistical
approach, one could consider the case where either the dis-
tribution of the effective parameter or the distribution of
its mean is non-normal. In this case, one may not be able
to obtain closed-form results as was possible with normal

distributions. The Bayesian-revised distribution
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parameters must then be obtained by numerical integration.
The distribution of the wafer effective parameter must
similarly be obtained numerically. Such computations must
be repeated for each production wafer tested. When such
computations are feasible in a practical production test-
ing environment, the test wafer approach is still practical.

In conclusion, this section has introduced a new ap-
proach to monitoring process parameter effects for produc-
tion monolithic device fabrication. By using the new con-
cept of a test wafer, it is possible to gather the required
statistics for a Bayesian estimate of the effective param-
eter distribution on a production wafer. A consequence of
the test wafer approach is a rational testing procedure for
the acceptance of production wafers.

3.5 Conclusion of Preliminary Considerations This chapter

has examined several approaches to combining prior statis-
tics, gathered for a population of similar devices, with
deterministic measurements made on a particular device. The
general goal has been to characterize the particular device
through this combination of information such that more in-
formation is available than would be by utilizing only the
above deterministic data. This general goal can also be
interpreted as a reduction in the number of deterministic
measurements required to characterize a device. It has been
assumed that the number of such measurements represents the

cost of testing the device.



130

Section 3.2 was concerned with device characterization
by means of the input-output device function. The theorems
presented in this section contain the essence of the devel-
oped preliminary techniques. A bounding algorithm was in-
troduced to enable the simple combination of TI's for the
RV's which were required to be combined by the preliminary
techniques.

In section 3.3, this algorithm and a number of alter-
natives were considered with respect to practical applica-
tion to device function testing. Several theorems were
discussed which indicated that the bounding algorithm used
in this section is preferably applied in practice, especial-
ly when the combined RV's are statistically dependent.

In Chapter 5, the preliminary techniques developed in
section 3.2 will be applied to the situation in which a
polynomial or transcendental interpolation formula is
‘ordinarily used to characterize a device function.

Section 3.4 presented an application for the use of
prior statistics to spatial interpolation of parameter
effect variations in monolithic devices. This special prob-
lem was included because of its importance and because it
represents a conventional approach to the combination of
statistical and deterministic data.

In the next chapter, an investigation of the linear
conformality property for pdf's will be presented. This

ﬂproperty has been seen to be salient to the developments of
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this chapter and will also be important to the techniques

of Chapter 5.
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4. BOUNDS ON LINEAR COMBINATIONS OF INDEPENDENT RANDOM
VARIABLES

4.1 Introduction A central concern within this thesis is

that of determining bounds on linear combinations of random
variables (RV's). It is assumed in most of the thesis
developments, that the combined RV's are statistically
independent. It was shown in the preceding section, that
the assumption of statistical independence often leads to an
optimistic bound estimate via analytic methods, when in fact
the RV's of a linear combination are dependent. It was also
shown that the bounding algorithm (BA) introduced in the
last chapter maintains a conservative bound estimate even
when the RV's are linearly dependent, provided that this
bound is conservative for the linear independent case. The
condition of a conservative bound was introduced in the last
chapter as the condition of linear conformity.

In this chapter, an investigation is made of the con-
ditions with respect to the probability density functions
(pdf's) of the combined RV's which guarantees a conservative
bound computed by the BA. The bound formed is an estimate
of the tolerance interval (TI) corresponding to a linear
combination of independent RV's. The computation of the BA
is a direct combination of the TI's for each of the combined
RV's. By direct, it is meant that the convolution process

associated with conventional methods of linear RV combina-

tions is avoided.
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It is first shown that the BA does not always result in
a conservative estimate of the TI for a linear combination
of RV's. After formal definition of terms, several impor-
tant properties of the Fourier transform of pdf's are
developed. These properties are required for the subsequent
chapter developments.

An important family of functions is discussed and
several theorems regarding the bounds formed by the BA for
members of this family are proven. This family, called the
"exponential transform family" contains such standard dis-
tributions as the delta, the Cauchy, and the Gaussian
distribution. In addition to analyzing the bound formed by
the BA, for this family, the chapter considers the bound
formed by the sum-of-squares (SS) algorithm, previously
defined. It is shown that the SS bound may be used as a
lower limit or minimum width TI for a linear combination of
independent RV's. Except for a combination of all Gaussian
distributed RV's, the SS bound is optimistic. That is,
this bound is narrower than the TI that would be formed by
conventional means.

A heuristic classification procedure is presented which
enables a graphical analysis of an arbitrary pdf transform
under certain conditions. These conditions include a
requirement of symmetry of the pdf. The heuristic is then

developed from a neaf—analytic argument.
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The chapter is concluded with a discussion of the
assumptions made during the chapter developments. An
example application of the heuristic procedure is given, and
the heuristic results are compared to an analytic solution.
This example corresponds to the example given early in the
chapter.

4.2 Definitions and Assumptions In this section, the bound-

ing algorithm, defined in the last chapter is restated. The
condition of linear conformity, (lc) which is an important
consideration in applying the BA to a linear combination of
independent RV's, is defined. An example is given, which
demonstrates that lc cannot be assumed for all situations.
In the preceding chapter, the BA was shown to be a preferred
method of bounding linear combinations of RV's in several
important classes of situations, provided the condition of
lc could be established. 1In studying the condition of lc,
several assumptions will be made to simplify this analysis.
These assumptions, stated in this section, will be discussed
at the end of the chapter in terms of their applicability

to practical situations.

Definition 4.1 (Bounding Algorithm) Consider the linear

combination of RV's

(4.1)



where the Ci's are constants and the Xi's are RV's with
known pdf's. Corresponding to the confidence level o, let
the TI's for each of the Xi be determined according to the
convention of equation (3.4), such that

p{aiixiibi} = a, for all i.
Then the "composite tolerance interval" (CTI) for Y is

defined by
N

N
(] min[C,-a;,C;b, <Y<} max[C,a,,C;b.]) (4.2)
i=1 1=0
where
(u ; Ulv )
minfu,v] =
Lv , otherwise
J
and
(w , wv ]
max[u,v] =
v o, otherwise).

This process of combination is referred to as the bounding

algorithm (BA).

As mentioned at the beginning of this chapter, one is
concerned with the situation wherein the CTI as just defined
is a conservative bound. The following definitions describe

two conditions of conservative bounds.

Definition 4.2 (Linear Conformity) Consider the linear

combination of statistically independent RV's, Xl"'XN'

135
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N
¥ =) C:; Xss (4.3)

If a CTI for Y is obtained using the BA and the confidence
level for each of the individual TI's is a, then the collec-
tion of pdf's for the Xi's are said to be "linearly con-
formal" (lc), if and only if, the confidence level for the
CTI is at least o for all values of the Ci's, and with no
restriction on a.

When the N pdf's are lc, and in addition have the same
general distribution form, with perhaps different distri-
bution parameters, this common distribution is said to be

"self-linearly conformal".

Definition 4.3 (Conditional Linearly Conformity) If for the

previous definition, there exists a minimum value of a for
which the CTI confidence level is at least that of the
individual TI's for all values of the Ci‘s, then the pdf

is said to be conditionally linearly conformal.

The BA may appear to the casual observer as a "worst-
case" bound formation. However, there are situations in
which the BA results in a TI which has a confidence level
less than that corresponding to the individual TI's. Stated
differently, the CTI formed by the BA can be an under-

estimate of the bound on Y corresponding to the confidence



137

level o associated with the Xi in (4.3). 1In order to verify
the possibility of an underestimate of the CTI, consider

the following discrete probability distribution given in

Table 4.1.
k p (X=k)
0 32
s «d
+2 .05
+3 .01
+4 0
+5 0
6 .02
+7 « 05
+B o1
+9 - 05
+10 .02
Table 4.1

DISTRIBUTION FOR WHICH ALGORITHM IS NOT VALID
Suppose both the RV's Xy and X2 have the above distribution.
Let

Y = X, + X (4.4)

1 2
Using the summation
10

p{y=3} =} p{X;=i}.p{X,=j-i}
i-10
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and noting that
p{|X2|>lO} =0

the distribution for Y is obtained, and is given in Table

4.2.
k p (Y=k) k p (Y=k)
0 .0968
+1 .0750 £ .0110
+2 . 0450 #12 .0034
+3 .0184 +13 .0024
+4 .0083 +14 .0065
+5 «0120 #15 .0120
+6 .0291 +16 .0158
+7 .0494 +17 .0120
+8 .0640 +1.8 .0065
+9 .0494 +19 .0020
+10 .0290 +20 .0004
Table 4.2

CONVOLVED DISTRIBUTION IN WHICH BA NOT VALID
Examination of the two tables reveals that if an a is
selected corresponding to

IX]<k,k =0, 1, 2, 3,
then

p{-2k<y<2k}<p{-k<(X;AX,) <k}

2
and the algorithm fails to give suitable results. This
example will again be considered later in the chapter.

In the remaining sections of this chapter, it will be

assumed that all pdf's under consideration are symmetric,

and that the RV's of linear combinations are statistically
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independent. It will be further assumed that all RV's of

a linear combination possess the same pdf with allowably
different distribution parameters, and that these pdf's are
explicitly known as a priori information. These assumptions
will be discussed at the end of the chapter in order to
relate their applicability to practical situations.

4.3 Fourier Analysis In this section, several important

properties of probability density functions (pdf's) are
discussed. These properties pertain to the Fourier trans-
forms of the pdf's. The reason these properties are dis-
cussed is that they will be useful in the investigation of
linear conformity, to be discussed in the next two sections.
Fourier analysis will be the basis for the developments of
this chapter.

In establishing TL's for the RV formed from a linear
combination of independent RV's, it is apparent that the
properties of the convolution integral remain the central
concern. This is true since convolution is the process by
which the pdf of the linear combination can be obtained.

In studying the convolution process it is natural to turn
to the Fourier transform. The reason for this is that con-
volution transforms to a simple multiplication via the
Fourier Integral, and certain properties are more easily
discerned.

In discussing the convolution and its multiplicative

equivalent in the frequency domain, one will f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>