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Abstract—One of the principal considerations in the implementation
of automated testing systems is the “cost” of accumulating test data.
Because testing is controlled and recorded by a digital computer, only
discrete data points are gathered. Also, an elapsed waiting time is
necessary in order to establish the test conditions prior to performing
a measurement. Due to these factors, the number of measurements has
a major influence on the cost of testing devices automatically. It now
follows that automated testing of continuous systems will entail inter-
polation. This paper treats the situation wherein statistical information
is substituted for some of the deterministic data in interpolation and
extrapolation procedures. The principle advantage with this approach
is that a reduction in the number of measurements required to charac-
terize a device through interpolation and extrapolation is achieved. A
consequence of utilizing the statistical data is that the device function is
said to lie within statistical bounds. In addition to introducing the pro-
posed approach, this paper describes practical considerations in obtain-
ing the required statistical information. A hypothetical example is
given in order to illustrate the application of the proposed techniques.

I. lNTROI)U(‘TlON_

PROBLEM of growing concern is the problem of testing
Acomplex devices by automated testing systems. A signifi-
cant percentage of these devices must be tested in a continu-
ous nonlinear instantaneous mode. That is, the device is
characterized by such an input-output response function. In
addition to the inputs that the device is intended to respond
to, environmental variables such as temperature and humidity
may cause significant functional variations, which must be
known for design.

Practical considerations usually require that measurements
be discrete. That is, at some specific input x, the response of
the device f(x,) is measured. Often this limitation of discrete
test points results from the fact that automatic testing systems
driven by digital computers generate the tests and evaluate the
measurements. It is natural to describe the input-output func-
tions by means of interpolation functions using the discrete test
points as data.

Exact-fit interpolation procedures are well suited to auto-
mated testing systems. They are easily mechanized and the
theory of their application is well established in the literature.
Practical application of this theory makes use of a priori knowl-
edge of the suitability of a weighted sum of standard functions
to describe the actual device function. For example, it may be
known 'that a certain order polynomial describes the function
within a given interval. Usually an error bound can be esti-
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mated from information about some order derivative of the
function [1].

When test measurements may be readily obtained, one may
simply gather sufficient data to characterize a device via inter-
polation. However, when such information is costly to obtain
and many measurements are required, it is advisable to con-
sider alternative information that may be available [2]. The
costs are usually associated with the time requirements or the
difficulties in simulating inputs for measurements or in the ef-
fects such tests have on the device. For example, accurate test-
ing requires that input transients be avoided. In thermal and
mechanical perturbations, the transients may be of significant
duration and the delay for steady state contributes significantly
to testing time cost.

This paper considers those situations in which the number of
measurements required to characterize a particular device is to
be minimized. The approach considered is to replace some of
the deterministic measurements normally required for inter-
polation with statistical information. The “statistical data” are
in the form of tolerance limits [3] obtained from the known
distribution of the device function f(x) at the value of x corre-
sponding to the data point. Since deterministic data values are
replaced with statistical ranges of values, the utilization of
such information results in two bounding functions, between
which the device function is said to lie. This statistical bound-
ing of the device function corresponds to some confidence level
which represents an uncertainty over and above the usual error
bound of conventional interpolation. It is noted that the utili-
zation of such statistical data has been suggested for noncon-
ventional interpolation and extrapolation elsewhere [4]. This
nonconventional scheme uses a differential extrapolation analy-
sis to obtain divergent bounds for a function near a determinis-
tic data point, and it does not assume a particular order of
approximation.

The assumptions and background required for this paper are
presented in the next section. Following this, the basic ap-
proach used in this paper is formalized for the simple case of a

- single deterministic data value replaced by statistical data.

This approach is then generalized to allow more than one point
to be replaced. Certain problems are seen to arise from the
need to combine several sets of tolerance limits. These prob-
lems and the practical aspects of ecarlier assumptions are dis-
cussed. A hypothetical example is given in order to illustrate
the application of the proposed techniques. Several implemen-
tation strategies are suggested.

1. ASSUMPTIONS AND BACKGROUND

The functions to be evaluated correspond to input-output or
response functions of physical systems.  This section will
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describe several assumptions with respect to these response
functions and the systems they represent. Also, since interpola-
tion and extrapolation techniques will be the basis for the
function evaluation, several conventional methods will be in-
dicated. The methods discussed will be those which are well
suited to automated testing procedures and also the statistical
approach to be developed. The preliminaries of this section
will be useful in the development of subsequent sections.

The functions considered are assumed to be instantaneous,
continuous, and allowably nonlinear. The independent variable
is referred to as the input x and the functional value f(x) is re-
ferred to as the output. The function f(x) is to be also viewed
as a random variable (RV) f;, where the index i denotes that
this RV corresponds to the unknown functional value at x;.
That is for any value of x in [a, b], the probability density
function (pdf) of f(x) is assumed known.! In this case x is a
deterministic parameter of the pdf g(x, u), and one can write

z
pUu)<z}=J. g (x,u)du. (1)

Two types of exact-fit interpolation formulas will be consid-
ered. The term “exact fit” is meant to convey the idea that
the formula matches the data points exactly, as opposed to a
“best-fit” match. The first type of formula is that of poly-
nomial interpolation. The various formulas differ in the order
of derivatives of f(x) used as data. For example, the first k
derivatives of f(x) at each of m points may be used to obtain
km - 1 order polynomial interpolation. It is easily shown that
no matter what formulation is chosen, the same polynomial is
produced for any given set of data points [1]. Itis, therefore,
true that when several methods, which use the same data are
being considered, the basis for choice should be computational
efficiency.

In deciding what polynomial formulation to use, practical
considerations dictate that high-order derivatives be avoided
and that the order of the polynomial be kept small. Increasing
measurement error is associated with higher order derivatives.
One limits the order of the polynomials used since high-order
polynomials are oscillatory, and any error bound that may be
obtained can become enormous as one moves away from a
data point. In order to avoid this problem, one may break up
the interval of x over which the interpolation is to be per-
formed, and consider each subinterval separately. Thus only
the data points within the subinterval are used, and a lower
order polynomial interpolation results.

This paper does not consider the conventional techniques
related to obtaining error bounds for polynomial interpolation.
It is assumed that the reader is familiar with the considerable
amount of literature available in this area. Nor is the related
problem of determining an adequate order for the interpola-
tion discussed here, except to say that such information must
result from prior experience with the functions to be approxi-
mated.

Y1t will be scen later that the pdf need not be known precisely for
practical application of subsequent developments, Nor does one need
to know g(x, u) at more than a finite number of points in |a, b]. The
reluxation of the required knowledge of the distribution of f(x) will be
discussed in a later section,
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The polynomial interpolation formula discussed in this paper
is the Lagrange form [1]

N
.y =20 Lx) - fxp)

i=1

(2)

where

N N
LiGe) =[] x - x)/ [] (x; - xp). (3)
j=1

j=1

J#i j#i

This form requires N values of f(x) at x;,i=1,--- N, and pro-
duces an N - 1 order polynomial. This form uses no derivative
data and is easily mechanized, allowing for dynamic selection
of the x; during the testing. Other formulas can be used, but
this particular form is useful in discussing the proposed ap-
proach.

The second type of interpolation formula considered is a
transcendental formulation. It is useful when f(x) corresponds
to a band-limited function [5], in the sense that it contains
no frequencies greater than a cutoff frequency, w,.. Based on
the well-known sampling theorem [5], this interpolation uses
a finite number of equispaced samples. Several authors [6],
[7] consider the error that results from truncating the cardinal
expansion of the sampling thcorem. Practical limitations re-
quire that the interpolated function contain frequency com-
ponents no greater than rw,, where 0 <r <'1. The cardinal
interpolation formula is then

yx)= Kifv J fm/[2w,.) - sinc Q. [x - m/2w,]),
m =K-N
O<N<oo (4)
where K is an integer chosen such that
2wex - 3 SK(X) <2wex + 3 )
and where
sinc z = sin (nz)/nz. (6)

The constant K is thus chosen so that an equal number of
sample points lic on either side of x so that K is a function of x.

Other interpolation formulas, which utilize the assumption
of a band-limited function are possible. For example, a similar
formula to (4) is possible if both values of f(x) and its deriva-
tive are used [6]. It isinteresting to note that an error bound
can be determined for Lagrange interpolation when f(x) is
band limited [8], providing the data are nearly equispaced.
Also, the practical determination of the band-limited proper-
ties of a function must result from prior experience with the
function.

The two types of interpolation formulas considered allow
two useful observations to be made. Equations (2) and (4) are
summations of data multiplied by interpolation weighting
functions.?  These functions are independent of the data
values. Also, the weighting functions can be seen to change
sign only at data points. These two facts will be usetul in the

2Yen [9] distinguishes these from conventional polynomial coeffi-
cients by the term “‘composing tunctions.
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subsequent developments. It will be useful to represent both
(4) and (6) in what follows by the general form

N+1

YO =X W) fxi)

where the required substitutions and constraints are determined
by the particular form of interpolation formula represented by

(7).

III. SINGLE TOLERANCE INTERVAL

In this section, it is considered how probabilistic information
of the form previously described can be used in exact-fit inter-
polation formulas such as (4) and (6). Suppose that N data
points are available for the Nth-order polynomial interpolation
of a function that is to be approximated. In place of the
(¥ + 1)th data point normally required f(xy,,) construct tol-
erance limits [3], [10] using the pdf of Jxn4y) [see (1)].
Define a tolerance interval (1), [Cy, C,], by the probability

PUCNG)EIC, Gl =2a, O<a<l. ()

Since (8) does not uniquely determine C, and C,, it is neces-
sary to choose an additional constraint. Usually the TI is de-
fined symmetrically about the distribution mean.

Once the TI of f(xy-,) has been obtained, the approach is
to use this range of values for the normally required f(xy,,)
value. By considering f(xy.,,) now as a RV SN 41, it is appro-
priate to rewrite (7) as a RV equation. That is

Y(x)=A(x)+ B(x) fy ©)

where x is now a parameter of the deterministic constants A(x)
and B(x). It is clear that if (8) holds, then the RV yx)is
bounded according to®

P{AC) + B(x) - €1 (x) <y (x) S A(x) + B(x) - Gy (x)} = 2a.
(10)

This result defines two curves to be constructed, between
which the function f(x) is said to lie with a probability of 2a.
These bounds do not include the conventional interpolation
error which effectively widens the bounding. Fig. 1 illustrates
atypical interpolation in which a single deterministic data value
has been replaced by a TI. It is noted that the determination
of whether to use C, or C, for minimization or maximization
of y(x) at a specific x is greatly simplified for exact-fit inter-
polation formulas. The previous observation that the sign of
the weighting functions of (7) can change only at a data point
indicates that the sign of Wy, (x) need be determined only
once for each interval of x between consecutive data points.

The result of (10) indicates that it is possible to reduce the
number of measurements on a particular system provided the
density function is available at certain parameter values. In
practice, one may precompute the values of C, and C, at
specific values of x, or may determine an interpolation formula
for €', and C, in terms of x at the specific confidence levels of

3(1t is assumed that B(x) is positive here, but for negative values the
limits of (10) are interchanged.  Also, C'y and Cy of (8) are generally
functions of x as indicated in (10).)
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Fig. 1. Polynomial interpolation in which one data point has been re-
placed by tolerance interval. &

interest. The latter approach is more suited for an adaptive
procedure in which the probabilistic data points may be se-
lected dynamically. Precomputing these functions allows for
faster processing and for a compact storage of the statistical
information.

IV. INCORPORATION OF SEVERAL TOLERANCE INTERVALS

The approach introduced in the last section will now be ex-
tended for the situation in which several deterministic data
points are replaced by the TI. By differentiating (7) with
respect to f;(x), one observes that

ay(x)
afi(x)

Thus the overall effect of substituting several TI for determi-
nistic data may be considered as a superposition of several in-
dependent effects. That isif several data points are represented
by specific TI’s, the values of each f(xx) can be selected one
by one in the same manner as was done for the single TI case.

Consider the situation in which the first & values of f(x) in
(7) are deterministic data, and the remaining N + 1 - k values
are the RV f;, represented by the TI. That is,

= Wy(x). (11)

N +1
Z Wi(,\') ’,f"
i=k+1

k
Y(x) =20 Wix) - fx) +
i=1

and
PG <f(x)<C,} =20,

The constants C; ; and Ci,2 represent the lower and the upper
tolerance limits for f;, respectively. Then the “‘composite toler-
ance interval” (composite TI) is defined by the expressions

i=k+1,--- N+1.

k N+1
D, = Z Wix) - f(x;) + Z [min (IW;(x) - Cix, Wilx) - Cin )]
i=1 i=k+1
(12a)
and
k N+1
Dy=20 Wix) - f(x)+ 3 [max (W(x) - Ciotu Wix) - G o))
i=1 i=k+1

(12b)
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BOUND ON F(x)
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Fig. 2. Polynomial interpolation in which several data points have been
replaced by tolerance intervals.

where min and max refer to the minimum and the maximum,
respectively, of two values within the parenthesis. Then y(x) is
bounded by the TI [D,, D,].

Inspection of (12) reveals that one may consider each of the
TI substitutions independently in obtaining a composite TI
bound on f(x). Fig. 2 shows a situation in which two TI’s have
been used in a polynomial interpolation.

While a straightforward procedure has just been indicated for
the determination of statistical bounds on f(x), it remains to
be shown that the composite TI for f(x) can be related to the
confidence level of the individual TI’s. One observes that the
result of substituting several RV’s in an interpolation formula
such as (7) is that a linear combination of RV’s is formed.
These RV’s are not, in general, statistically independent. How-
ever, it will be assumed that all the x; at which deterministic
data are replaced by a TI will be far enough apart from each
other and from the other deterministic data points so that the
RV’s f; at these x; can be considered independent. It will be
further assumed that the TI are defined symmetrically about
the distribution means, as suggested previously. Under these
assumptions, it is possible to speculate on the confidence level
associated with the composite TI. It is shown elsewhere [10]
that for a large class of pdf’s, the confidence level correspond-
ing to the composite TI is at least 2a. This class includes the
Laplace, the Gaussian-normal, and the Cauchy pdf’s. For other
pdf’s, which are monomodal and are symmetric or near sym-
metric, a nearly analytic argument [10] may be used to show
that the composite tolerance level is at least 2a. The develop-
ment of the argument and its application is lengthy and, there-
fore, omitted here.

The requirement that the pdf of f(x) be known explicitly
over the interpolation interval of x is usually difficult to sat-
isfy in practical situations. However, the determination of a
likely candidate for the distribution of f(x) and estimates of its
parameters are often possible. In order to obtain statistical in-
formation, one must be prepared to make an initial concerted
measurement effort on a large number of similar randomly
sclected devices.  The savings of such information gathering
programs can be realized when hundreds of thousands of com-
ponents of the same device type are manufactured and are
subscquently tested using this @ priori information. Since one

often uses predetermined data points, the parameters of the
device pdf need be determined only at those points where the
TI are to be substituted for deterministic data. A further sim-
plification results when one chooses the confidence level ahead
of time. In this case, only the TI need be estimated using
standard-lot sampling techniques [3] .

A final consideration of this section is that of the statistical
independence of the RV f;, which are represented by their
respective TI’s. From the assumption that f(x) is continuous,
it is meaningless to consider any randomness between two
values of f(x) differentially close in terms of x. In this case,
the two values are highly correlated. If the distance between
these two points is increased, then it may become reasonable
to make the assumption of statistical independence, although
the existence of some correlation will usually result in pessi-
mistic statistical bounds.

Sometimes it is possible to remove a form of correlation. By
way of illustration, consider the class of devices which have
input-output functions of the form

N -
f&x)=ao+ Y a x*
k=1

and suppose that the constants a, are very nearly the same for
all the devices that are being represented by f(x), except for
a,. For this constant, assume that there is great variation from
one device to another. This wide variation may represent dif-
ferent output “bias” levels for electronic amplifiers for ex-
ample. One may easily see that for any particular device, the
values of f(x) are highly correlated by the value of ay. To re-
move this correlation, g is initially determined for each com-
ponent tested and then subtracted from function value to give
the new function

f&)=f(x)-ao

The distribution of f(x) is gathered, and then interpolation is
performed on this “scaled” function. Thus the correlation due
to a is avoided. Other types of normalization can be used for
other types of functional correlation.

IV. A HYPOTHETICAL EXAMPLE

Cogesider a temperature-to-voltage transducer as the device to
be tédted. The device consists of a small quartz crystal and a
monolithic circuit. The circuit consists of an oscillator of
which the frequency is controlled by the crystal, and a network
which limits the oscillator output and then converts it to a dc
voltage so that the output is approximately proportional to
the frequency. The crystal has a temperature coefficient,
which results in a change in the resonant frequency propor-
tional to the temperature.

Both the crystal and the circuit are separately “calibrated”
by laser trimming. The device is then constructed as a hybrid
device. Although the device is fairly accurate due to the cali-
bration of the two components, some nonlinearity of the de-
vice function results from mounting eftects of the erystal plus
parasitic temperature effects in the circuit. 1t has been found
from experience with a large number of these devices, that a
second-order polynomial interpolation over intervals of 10°
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results in negligible truncation error. The device function must
be known over a 50° range. One hundred percent inspection

of the devices is desired. Using conventional interpolation,

each device must be sampled at 5° intervals, requiring measure-
ment at a total of 11 temperatures. Although ten devices can
be put in the temperature control chamber at once, it takes
several seconds to reach equilibrium at any temperature setting.
A minicomputer presently performs the measurements and
controls the temperature chamber.

Because of the large number of devices produced, it is desir-
able to reduce testing time. From data gathered from conven-
tional testing of several thousand devices, TI at each of the 11
test temperatures has been determined corresponding to a
confidence level of 0.99 (99 percentile). The total tempera-
ture range is to be broken up into subintervals of 10° as before.
However, the midpoint measurement of each subinterval is to
be replaced by the TI corresponding to this temperature. By
using this statistical data, five of the 11 temperature simula-
tions are eliminated. The bounding of the device function
corresponds to the single TI case of Section III and Fig. 1.

VI. IMPLEMENTATION STRATEGIES

Application of the preceding developments to practical prob-
lems requires consideration of additional questions. These in-
clude the following: where to locate data points, which points
and how many should be statistically represented, and when to
make additional measurements. These questions may be par-
tially dealt with in terms of conventional interpolation theory.
This section considers strategies beyond the conventional tech-
niques which may be studied elsewhere [1].

It is assumed that there exists an a priori criteria for deciding
the acceptability of a device function. That is, from the in-
tended use of the device, one must have bounds for the device
function which corresponds to proper operation of the device.
In the example given in the last section, this might correspond
to a limit on the relative deviation from linearity.

In deciding where to locate data points, one may be con-
strained by equispaced requirements of most cardinal inter-
polation formulatons. The data points may otherwise be
positioned in critical segments of the intei®olation interval.
Such critical segments can exist when the TI greatly overlaps
the acceptability limits alluded to previously. One would
choose these data points to be represented deterministically,
while regions in which the TI was small and well within the
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acceptability limits would be most reasonably represented by
statistical data. It must be noted that the conventional inter-
polation error must be added to the statistical bounds on the
device function. In practice, one would incorporate this error
in the acceptability bounds by subtracting and adding it to the
upper and lower limits, respectively.

Depending on the allowable flexibility of the testing system,
various adaptive strategies can be implemented. For example,
a minimum number of measurements could be made in the
initial phase of the testing procedure, If the statistical bounds
were found to overlap the acceptability bounds (containing the
interpolation error bound), a measurement could be made at
the point of maximum overlap, replacing one of the statistical
data values. This process could continue until either the over-
lap condition was removed, a measurement was outside the
acceptance region, or all the statistfcal data were replaced by
measurements.  Alternatively, the statistical data point could
be moved to the overlap region in order to determine whether
use of the TI corresponding to this poirit would result in the
overlap being avoided.

No precise rules can be given for the exact procedure to use
since such techniques are heuristic and strongly depend on the
application. The preceding ideas merely indicate the kind of
considerations that must be made in practice. One must use
as much information as is available in designing a procedure for
a particular testing problem.
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