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ABSTRACT

The marked increase in availability of digital computers has
spread the use of state variable techniques for analysis of linear
systems.b In general, the initial conditions defined just before the
input is applied differ in value from those defined just after the
time of application. Since most time domain techniques require the
."time greater than zero" initial conditions to be known, it is
desired to be able to obtain the values of the initial conditions
corresponding to one side of the origin from the values at the
other side.

The initial-value property of the Laplace transform is found
to be the key point in treating the problem. Algorithms based on
this are developed using the differential equation, transfer function
of the system, or the state variable assignment for the system.'
These algorithms provide programmable techniques for modifying the
initial’conditions to account for singularities at the ofigin.

These methods are then extended to linear systems with delay,

ii



multiple inputs, and multiple outputs. Computer print-outs for several

illustrative examples are included.
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1. INTRODUCTION
This study is confined to systems described by linear
differential equations. One way of solving a linear differential

equation is directly in the time domain. In the state variable
L

- technique an nth-order differential equation is first converted to

‘'n first-order differential equations. Then numerical integration

is used to determine the transieﬁt response corresponding to the
system's input.

A problem arises when the initial values of the state
variables are to be determined. One usually specifies the initial
conditions (I.C.) of the system. The I.C. are defined at a time
just previous to the application of the forcing function to the system.
The input is therefore discontinuous at the time of application or
origin, and it is therefore possible that the output of the system
and/or its derivatives will also be discontinuous at the origin.

The various numerical technidues require that the I.C. of
the system be known and that the solution or outpu& of the system
and its derivatives be continuous functions of time. Clearly, one
must find the state of the system just after the forcing functién
has been applied, and then consider this state to be the initial
state. Once this modification of the I.C. is performed, the transient
response of the system can be correctly determined by numerical
integration.

For simple circuit problems, the modified I.C. can usually
be determined by inspection of the circuit. For a linear, fixed

system described by its transfer functions rather than in terms of

- | .



the ideal R-L-C components, it is not readily apparent how to modify

the I.C. It is the purpose of this thesis to develop specific

techniques for modifying the I.C. The desired techniques are of

algorithmic form to facilitate their programming on a digital computer.
An alternative approach to solving linear differential

equations is in frequency domain by means of Laplace transforms.

Since the Laplace transform can account for discontinuities in a

function and its derivatives, it is logical to approach the problem

of modifying I.C. through a study of the Laplace transform. Before

the derivation of the desired algorithms is attempted, it is instruc-

tive to consider the significance of the I.C.



2, INITIAL CONDITIONS CONCEPTS

In most engineering problems, a system is described in terms
of differential equations. Often the transient response of the
system to a given forcing function is of interest. To deﬁermine the
response uniquely, one must be given additional information about
the system not specified within the differential equations or the
forcing functions.

Consider the single input, single output system of lumped

components:

X — SYSTEM = ¥

Figure 1

Block Diagram of a Single Input, Single Output System

If furthermore the system is linear with no time delays, the ordinary

differential equation describing the system can always be written in

the form:
n ' n;l n-2

d vy d y d y

—7+a ()—=7+a_ _ ()—=7+...+a(t)y-=

dtn n-1 dtn 1 n-2 dtn 2 o

dm X ‘ ' dm“1 X

b_(t) * b (B)=——==" %, ; ; #* b AE)x (1)
m dt m-1 dtm 1 o

where n > m for a physical system. From the theory of differential

equations, the general solution of Equation (1) is the sum of



the complementary solution and the particular solution. The comple-
mentary solution can be expressed as:
n

(O = > el )

k=1

where ul(t), uz(t), ol @ .‘un(t) are n linearly independent solutions
of the homogeneous equation associated with Equation (1), and where
Cys Cps o o - c are arbitrary constants. It is apparent that one
additionally needs n independent constraints on the system if he is
to determine uniquely the transient response. If the values of y(t)
and its first n-1 derivatives are known at séme non-negative value of
time, the n arbitrary constants of the complementary solution can be
evaluated using these values and the expression for the general
solution.

The transient response is u;ually thought of as beginning
at some time, T, when the input to the system is initially applied.
By a change of variables, the initial point can always be made to
be the time t=0. The values y(0), y(l)(O), R, y(n-l)(O) are
called the "initial conditions" of the system. Except for the zero-
input case, some function of time is suddenly applied to the system.
The input is thus a singularity function. A singularity function
and all its derivatives are continuous functions of time for all
real values of time except possibly one(l). (For this analysis, a

piecewise continuous input can also be included since only the region

near t=0 is of interest.) Since a linear system is only capable of

(1) Reference 1, page 1l.



the operations of amplification, integration, and differentiation,

it is immediately seen that the output must also be a singularity
function. The initial conditions must be defined in a limit, either
as an identically negative t approaches zero from the negative values
of time or as an identically positive t approaches zero from the
positive values. As a matter of convenience, we will designate this
first limit as the negative limit and the second limit as the positive
limit. Also we shall, for convenience,'designate the initial con-
ditions defined in the sense of the negative limit as I.C._ and that

defined in the sense of the positive limit as I.C.+
To illustrate the possibility of the I.C. being discontinuous,

consider the circuit:

T VYW

meeee  SeLE) y(t)

s -
1 Vo i 2

———

T
b

Figure 2

Simple R-C Circuit to Demonstrate Discontinuous Initial Conditions

where the capacitor is uncharged prior to the closure of the switch
and y(0_) = 0. When the switch closes, the capacitor is effectively
a short circuit for that instant and the voltage across R2 instan-

taneously jumps from zero to 1 volt. One can see that the value of

I.C._is not the same as I.C.+ .



For a set of equations describing a system, one may approach
the solution in the time domain. Analytically, this usually means
finding the particular solution. The I.C. are used to determine the
arbitrary constants of the complementary solution. It is possible
to use the I.C. , but rarely does an engineering text adopt this
convention. The convention of the positi&e limit is preferred
because of the difficulty of obtaining the particular solution for
an input that is a singularity function.

For high order systems, the characteristic equation asso-
ciated with the system cannot be factored except by numerical
techniques, and then in only some cases. Solution by numerical
integration is ofteﬁ used, especially when a digital computer is
available. Since the usual methods of numerical integration cannot
handle a singularity function directly except in limited cases, it

4 must be found separately.

becomes clear that in such cases the I.C.

The Laplace transform is most veréatile in handling the
positive and negative limit conventions. Either convention can be
adopted, provided that it is used consistently throughout a given
problem. Properties such as the initial-value property and the time
differentiation property must be used with respect to the convention
adopted. The Laplace transform is considered in greater depth in
the next section.

It becomes clear that the standard techniques for obtaining
the transient response require the I.C.+, with the exception of the

Laplace transform defined through the negative limit. Unfortunately,

in most types of problems involving physical éystems, only the I.C._



are at one's disposal. For simple systems, it may be apparent how
to find the I.C.+ as in the circuit of Figure 2. As the complexity
of the system increases, a method for.obtaining the desired I.C. is
no longer obvious.

Very often‘the transient response is desiféd for the case
where the system was at rest previous to the initial point.
Another problem of interest assumes that a system has reached a
steady-state condition for one given input. Some other signal,
perhaps noise, suddenly enters the system, and the response to the
disturbance is desired. In both cases, the I.C._ are immediately
known while I.C.+ may be needed for the solution of the response.

In a circuit problem, the I.C._ are specified indirectly,
in terms of initial voltages across capacitors and currents through
inductors. Solving for the values of the output and its derivatives
at the negative limit is nearly as tedious as solving directly for
the I.C.+ . In this and certain otﬁer types of proble@s, it is
convenient to use the state variable techniques since the state
variables can be taken as the voltages across -ideal capacitors and
the currents in ideal inductors. The negative limit values of-the

state variables correspond to the I.C. specified in the problem.

Unless the negative limit version of the Laplace transform is used

to obtain the transient response, the problem of how to obtain I.C.+

again presents itself.
In control systems analysis, the system is often described

solely by a block diagram, where each block is given in terms of a

transfer function. One cannot intuitively determine the I.C.+ only by



looking at the block diagram and a knowledge of the negative limit
state of the system.

To solve the problem of finding the I.C. a procedure in

+,
the form of algorithms is desired. Not only can singularity function

inputs be handled more easily, but inputs having several singularity

points can also be handled.



3. LAPLACE TRANSFORM CONCEPTS
3.1 Introduction

In this section, some basic properties of the Laplace trans-
form are considered with respect to positive and negative limits
defined in the previous section. Tﬁe "initial-value property" is
of particular interest and it is extenaed to handle situations where

it is normally considered to break down.

3.2 Singularities and the One-Sided Laplace Transform
The one-sided Laplace transform of a function f(t) defined
for positive values of t, is defined as a function of s, by the

integral
8 {f(t)} = jff(t)e—Stdt
o

(2)

over the range of values of s for which the integral exists .
Sufficient but not necessary conditions for the existence of the
(3).

Laplace transform of f(t) are :

a. f(t) is at least piecewise continuous in every positive

interval t1 S E<T.

b. tnlf(t)] is bounded near t=0 for some number n, where

n<l.

c. There is a number s for which e-sot‘f(t)l is bounded

for large values of t.

(2) Reference 3, page 53.

(3) 1Ibid, page 55.

3)
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Singularity functions such as the Dirac delta function 0(t)
and its derivatives do not conform to the second condition stated
above. In fact these functions are nét considered true functions.
They can nevertheless be handled by the Laplace transform as they
arise in connectio; with many physical problems.

It is a matter of convention whether the lower limit of
Equation (3) is taken as the negétive limit O_ or the positive 0+ .
If £(t) is non-singular at the origin, the two conventions are
equivalent. To see this consider Equation (3). Let the Laplace

transform of f£(t) defined by the negative limit convention be written

as

L {£5©} = F_()

and the transform defined by the positive limit convention as
L, {em} = F ()
+ J 4 ’

Then one immediately sees that

© 0
L {s0) = [ £ e J+f(t)e;5tdt r1, {0} .
0 0

If £(t) is first assumed to be continuous at the origin, then
f(t) = £(0) on the interval 0O_st=< 0+ . Then
+

0
L_ {f(t)} = L+ {f(t)} + £(0) J e %%t = L+ {f(c)}
. 0”

for f£(t) continuous and non-singular at t=0. If f(t) has a finite
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discontinuity, the same result can be obtained. For this case,
assuming £(t) is still not singular at the origin, the function is

bounded as !f(t)! < k > 0 on the interval 0_ st=s O+ . Then

o, o, 0,
I J £(t)e Stqe | < J ls)| le™®%de < k| e St < (x)(0) =0
0o 0 0

which proves:

Theorem 1: If £(t) is non singular at the origin and is Laplace

3
transformable, then L;{f(t)j = L+{f(t)} .

‘If singularities exist at the origin, the Laplace transform of f(t)
will differ for the two limit conventions, since f(t) is either de-
fined to contain the singularity or to be zero for t < 0 and be
continuous for t > 0.

It is convenient at this point to consider the negative
limit convention. From Theorem 1, there is no difference in the
Laplace transform of regular functions found in the usual Laplace
transform tables. It is further noted that propefties of the Laplace
transform such as fhe final-value theorem which do not explicitly use
the values of f(t) or its derivatives at t=0 are equivalent for the
two conventions. The only properties to consider are those of time
differentiation and the initial-value theorem.

From Equation (3) we have

L (80 T [k e
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Integrating by parts

j d:ét) e Sty = £(t)e | + f £(t)e™®fde = £(0) + L-{f(t>}
0 < Y 0

providing L_{f(t)} exists, The time differentiation property can be
extended to higher order derivatives in the same way it is extended

(4)

when the positive-limit convention is used. Thus

) .

L-{—————d n [f(t):l } - skL_{f(t)} Sl gy - K2 My L.
dt

; f(k'l)(o_). %)

The initial-value theorem is an extremely useful tool. If
f(t) is non-singular at the origin, then regardless of the limit

(5)

convention used

lim s F(s) = f(0+)

s = ®
To show this for the negative-limit case, consider Equation (4) for

the value k=1, Thus

L_{f'(t)} = fe'Stf'(t)dc = s F (s) - £(0)
| 0

(4) Reference 5, pages 176-179.

(5) Reference 5, page 181.
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Taking the limit as s = @

(<]
lim s F_(s) - £(0) = 1lim Je-Stf'(t)dt (5)
s ™ ©® s ™ ©

0.
Let £'(t) = f'e(t) + £f'd(t) + £'s(t) where f'c(t) is the continuous
part of the derivative f'd(t) is the discontinuous part, and f's(t)
is the singular part. The limit of the integral of the first two

parts of the derivative multiplied by the exponential are clearly

zero. Ve may represent the singular part as
f's(t) = A, 6(v)

since f(t) is assumed non-singular. Therefore, Equation (5) becomes

lim s F_(s) - £(0)) = lim je-StAo 6(t)dt.
§ @ s = ©
" -
Using(6) J g(t) 6(t-c)dt = g(c)
a

1im s F_(s) - £(0.) = Ao .

§ W ®

0_'.. 0+
But £(0,) - £(0) = I—d—gésldc j Ay 6(t)dt = Ay
0 0

Therefore 1lim s F_(s) - £(0.) = £(0;) - £(0.)
§ ? ©
lim s F_(s) = £(04) : (6)
s ™ ©

(6) Reference 4, page 55.
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If the function f£(t) is singular at the origin, then
lim s F(s) = £(ty) @)
g — o
does not exist(7). Textbooks and technical papers very often abandon
the initial-value ;roperty at this point and simp1§ state that the
property does not hold. Since impulses and their derivatives are

Laplace transformable, the initial-value property can be extended

in many cases to handle singular functions.

3.3 The Modified Initial Value Theorem

Suppose the Laplace transform F(s) of a function f(t) is
known and suppose the limit of Equation (7) does not exist. It
would seem that‘the function f(t) is singular at the origin. In
many instances, information regarding the initial point can be ob-
tained even if the function is singular.

If F(s) can be put in the form

| b s" + bm—lsm-l +. .. +bs+b

¥m = n n-1 > 4 (8)
s +a s +...+a;s +a
n-1 1 o
use of the initial-value theorem yields
£(0,) = lim s F(s) = lim [b s‘“”l‘“] 9)
s 7 o s ™ ® .
Then 0 m < n-1
f(O*) = bm m = n-1
" undefined m==n

(7) Reference 5, page 181.
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The conventional interpretation of the initial-value property can
only be used for the first two cases. Suppose m=n., Dividing the

numerator by the denominator in Equation (8) yields

m-1

(bm_l- bmam_l)s + ...+ (bl- bmal)s + (bo- bmao)

F(s) = bm + = ==
s +a s + ... +a.s+a
n-1 1 o
=b_+F(s) . (10)

Then £(t) = b_ 6(t) + L7t {F (s)l

m 1 J

If the initial-value theorem is applied to Fl(s), one finds that

b ). In terms of the function f(t), it is apparent

m-1" mam-l

that there is an impulse of magnitude bm at the origin while the value
of f(t) a small time after the impulse is given by fl(0+> .

Is m > n, then Fl(s) would also be singular at the origin.
By repeated division of the numerator of the fractional term in F(s),
by the denominator, the remainder term is reduced until the order of
the numerator is less than the order of the denominator. The fraction
can then be handled by the initial-value theorem while the terms of
povers of s can be considered to represent impulses of order equal to

the corresponding powers of s. An algorithm to reduce Equation (8) to

-n m-n-1 m-n-k +

m
F(s) = c s +cys + .. .+ C,S et +
d " lag 4., . kdasd
n-1 n-2 1 [
n ' n-1 (11)
s +a s + . ¢« +a,s +a
n-1 1 o



16.

is derived in Appendix 1. The constants found by the algorithm(s) are
R bm (12)
k
= . . - -
ey = bm-k pa ck-i an—i 3 k 1,2, . . , m-n
i=1
m-n
di = bi - :g: cj an-m+i+j : i=0,1, ..., n-1 (13)
j=o
where ar=0 if r <0.
It is clear that if the inverse Laplace transform is found,
the function f(t) will have impulses at the origin of:
order m-n and magnitude R
order m-n-1 and magnitude 1
. . . . . . . . . . (14)
order 1 and magnitude c¢
m-n-1
order 0 and magnitude -
th i s
where an n order impulse is
n
d = [6 (t)] .
dt
The value of the function a differential time € > 0 after t=0 is
m-n
dye1 = Ppay - €5 #2nt+j-m-1 (15)
=

where ar= 0 for r < 0 and cj= 0 for r < 0.

(8) Algorithm is only used when m 2 n.
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In many cases, the impulses existing at the origin are in
themselves of little interest. When the output of the system is the
input of another system, an impulse or its derivative may be sig-
nificant. When sufceptability of a digital system is a critical
concern, one is interested in the effect of high order impulses.

In physical systems, the transfer function does not have a higher
order numerator than denominator so that it cannot generate an impulse
of order higher than impulses in the input. However, in control
applications, derivative control is approximately realizable such as

in Figure 3.

— O

L )

Vo(8) pes

.Vl %R V2 Vl(s) RCs + 1

o

Figure 3

A Simple Differentiation Circuit

If RC < <1, then the circuit is approximately a differentiator and
the output will be approximately an impulse for a step input. It is
therefore possible to generate impulsive signals somewhere in a
system even though the input is continuous.

In most cases, however, one does not need to consider impulses
at the origin. For practical purposes, the initial point is taken

just after the origin. Additionally one may not be interested in the

~ possibility of the derivatives of the output containing impulses at
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the origin as long as the transient response obtained is valid for

t > 0. On this assumption we state:

Theorem 2: Modified Initial—Value(Theorem:
If a. the Laplaae transform of f(t) éxists;

b. 1lim [s F(s)] does not exist;

g = @

c. F(s) can be put in the form of Equation (8);
then f(€), where € is the positive limit point of the origin, is
given by Equation (15), where C2Cqs o ¢ ¢« €, TE determined by
Equation (12) and £(¢) = £(0.) is'defined as the "modified initial-
value" of f(t). Impulses at the origin are given by Equation (14).

If F(s) cannot be put in the form of Equation (8) suchAas

in the case of delay paths in the system, the problem is complicated.
Several cases of these functions will be considered in later sections.

It is ultimately desired to be able to determine the modified

initial-values of the n-1 derivativeé of f£f(t) for an nth order system.

dk
Using Equation (6) and letting F(s) = L_ { m f(t)}
dt
®) & 7 |
£ 0y = 1n i {Lo e} . (16)
s *® dt
Now using Equation (4) in Equation (16) yields
£ ) 0 = 1lim [sk+1F_(s) - Fr) - £ Wy - L L. (17)

s ™ ©

- s2e® Dy - s f(k’l)(o_)]
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It may appear that the terms of Equation (17) which contain
the I.C._ generate impulses. But, in fact, they cancel with terms

produced by sk+1F_(s). To show this, consider a simplified equation

n

o y(t) = x(t) (18)
dt

Using Equation (4), Equation (18) becomes

1

X(s) + sn-ly(O_) + sn-zy(l)(O_) +...+s y(n—z)(O_) + y(n-l)(O_)

s"Y (s)

n S
S s

80, 0 D
sn-l n

S

Then using Equation (16) for the kth derivative, k < n

y(k)(o+) = lim [_X(s) + sky(O_) + sk'ly(o_) + ...

g 4 & L sn-k-l

y@ D (0 )

+1
y oy .,
s ’ : Sn-k-l

+8 y& Doy + €0 +

Sy - Doy - L. - 2Dy - s <o) ]

Cancelling terms we obtain

(k-1) (n-1)
@ oy - X(s) . (k) 0.) ©)
v = A, ['EFFEETI'+'Y ) + LBy L+ X 0]
y(k)(0+) = lim r-——giil—- -+ y(k)(O_) (19)

5 = @ = sn-k—l
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provided that the limit can be evaluated.

A more general system will yield results similar to Equation
(19). Intuitively one sees that this must be so. If there is no
input, it is clear that the only term on the right-hand side of
Equation (19) will be yk(O_) since there is no discontinuity in the
input. Similarly, if the I.C._ are zero, the only contribution to
the initial values at t=0+ must be due solely to the input.

It is now obvious how the I.C., are determined from I.C._ .

If the system of Figure 1 is described by

o° : dn-l
:;Fry(t) +ta dtn_l y(t)y +. ..+ aoy(t) =
m dm-l
bm dtm X(t) + bm-l —d-t—m_—l— x(t) +. . .+ bOX(t) (20)

Then the transformed equation is

n n-1
(s + a _18 + .. .+ a;s + ao) Y(s) =
(bmsp + bm‘_lsm-1 + .. . bo) X(s) + I.C._ terms
m m-1

bs +4+b s +- + b '

= c ot I.C. terms
¥(s) =2t ln_l % X(s) + — - (21)
s +a s + ¢« © o« F A s +a s + . o ¢t a
n-1 o n-1 o

(9

From the above discussion, Theorem 2, and Equation (19), we obtain

(9) This result is obtained in Reference 8, page 175, except for the
limited being a conventional limit. The requirement that this limit
exist is typical of the treatment of the initial-value theorem in
the literature. The special limit of Equation (22) usually makes
possible the extention of the initial-value theorem to functions
that are singular at the origin.
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m m-1
1 (bms + bm-ls + . . . F bo)

v 0 = y® o) + 1im Esk+

n
§ 7 ® s s + o @ i
(s + a1 + ao)

X() ] (3

where 1lim* denotes that this is a special limit. This is to be
s = ®
< ) N
evaluated as a regular limit, if this limit exists, or else to be
evaluated using Theorem 2 or the techniques that Theorem 2 embodies.

In addition to the change.

y® 0 - y® o) =ay®

the impulses of yk(t) at the origin are also determined using the
algorithm defined by Equation_(lZ) and Equation (13).

It is also possible to determine the I.C._from a knowledge of
I.C., and the input function using Equation (22), although one is
rarely interested in working in this direction.

Algorithms that yield the initial value information for the
output and its derivatives are developed in the next section for the

generalized function F(s) and then for some specific inputs.



‘ f(s) =

4, ALGORITHMS TO MODIFY INITIAL CONDITIONS FOR A LINEAR, FIXED,

SINGLE INPUT/OUTPUT SYSTEM

If the system of Figure 1 is linear, fixed, and has no delay
paths, the differential Equation (20) may be used to describe the
system. The transform of the output is given by Equation (21) which

is repeated below.

-1
b s+ b .s" 4+ +b
= $ & % I.C. terms
Yig) w7 . © x(s) + - (23)
sn+ a sn- + .. . +ta sn+ a sn + .. .8
n-1 (6] n-1 o

(10)

Inspection of a table of Laplace transforms indicates that the

transform of virtually any function that is of practical interest as

an input can be written as the quotient of two polynomials in 5(11).

Assuming this condition, Equation (23) is then written as

P p-1
Bs'+B .s° +...+B
p-1 () - I.C. terms (24)

sq+ A sq-1+ . o . +A sn+ a sn-1+ e o o« + a
q-1 o n-1 o

Using Equation (22) we write the initial conditions as

/B sp+ B sp-1+ e« « « +B \
y(k)(0+) = y® 0y + 1imk [Sk+1; P p-1 ~ ° ] (25)
8w \ sdea T L 0L+

(10) Reference 6, Pages 328-335.

(11) The method of handling functions that do not conform to this
requirement is considered in the last part of this section.

- 22 -
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This nth order system requires y(0,), y(l)(0+), TER y(n-l)(O )
+

as the I.C. . Additionally, one might require that any impulses

present at the origin of y(t), y(l)(t), g 6 B y(n-l)(t) be

determined. Let

F(s) = —P P ' g (26)

Using the expansion algorithm of Equation (12), Equation (26) becomes

¢
F(s) = c s M c sk PRI - - SR,
[ 1 P-4 s
¢ d gLy o Ay L E D
+ pin-q + q-n-1 q-n-2 -n 27)
s YR
q-1 o
where c =B
o P
Rj"“
cj = Bp-J - {_J cj-iAq-i : 1,2, o o o o p+n-q

j=
Ar =0 for all r <0

Using Equation (27), the initial conditions expression (25) becomes

pin-q
y® 0 =y ) + 11w [sk“. S cjs"'q'J +
g8 =@ =0
d sq-n—1+ d sq-n-2+ e+ o t+d s
q-n-1 q-n-2 -n 7
=) 4 8
sha T L +a
-1 o

where k = 0,1, . . . , n-1



24,

One notices that

d s s
lim sk+1 [ q-n-1 q-n-2

s = sd4a 1.+
R
exists and equals zero for (k = 0,1, . . . , n-1). Then Equation (28)

simplifies to

p-ﬂ}n
y(k) (0+) - y(k) (0-) +  lim® ,\ (cjsp’*'k'i‘l-j-q) (29)
s - o Ead
3=0

From the definition of 1lim* given by Theorem 2, and from the
s—bm

discussion leading to the theorem, one clearly sees that

0 , <0

/

lim* s(sr—l) = 1im*(sr) = ]‘-1 , r =0

§ *® s

0 , >0

so that Equation (29) becomes

(k) = ()
y Y =y U0 fe g | (30)
where c =8B
o P
S
5 = Py T, Cyeifqer 3 3T LA e p
i=1

Ar =0 for all r <0

If the limit of Equation (29) is written as

pin-q

sl
1im® s[ i;ﬁ c sPJrk 371 J = lim%* s G(s) ,
] j s = ©

j=

s =
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the impulses at the origin are determined as was done in the
development of Equation (14) by considering the inverse of G(s).
Thus one immediately sees that for p+k-q < 0 , no impulses occur

in y(k)(t) at the ogigin. Otherwise the impulses of y(k)(t) are of

order and magnitude
ptk-q e
pik-q-1 ¢y
ptk-j-q o : (31)
1 cp+k-q-1
0 c
ptk-q

If the output of a system can be represented by Equation (24),
the I.C., can be found from Equation (30) and the I.C._ . The
impulses of the output and its n-1 derivatives.at the origin are
given by Equation (31). While one can easily multiply the Laplace
transform of the input times the transfer function, it is desired
to derive algorithms that will directly yield the initial value
information without explicit use of the Laplace transform. Such
algorithms are derived in Appendix II for some standard input
functions. The algorithms are derived by actually multiplying the

Laplace transform of the input by the general transfer function,
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(32)

to obtain Equation (26). The constants of Equationl‘26) can then be
related to constants in Equation (32) and in the expression for the
input function transform. With these constants known, the algorithms
are obtained by substituting these constants into Equations (30) and
(31).

In Equations (30) and (31), generalized terms are used to
pﬁt the expressions in a compact form. However, the generalized
subscripts of a constant may sometimes take oﬁ a value outside the
range for which the constant is defined. Usually such a constant can
be interpreted to be zero. The single exception is for a which is
taken as unity although a does not appear explicitly in Equation (23).
When an index of a summation or recurgive operation is initially past
the final limit in the direction of the index change, this operation
should be deleted until the summation or recursion is again initiated.
For the derivation of the algorithms of Appendix II, this procedure
has been used.

To facilitate application of the algorithms of Appendix II,
one must have a transfer function in the form of Equation (32) or a
differential equation of the form of Equation (20) to define the con-
stants aj, bj' Table 1 summarizes the algorithms. The input function
is found in the first column, Jm and o, are evaluated using the

1

expressions in the same row as the input. 1If Jm is negative, the
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jnitial values do not have to be modified. If Jm is zero, (co = albm?

is computed and the initial value
-1 -1
y@ Do) = y® ) + e

is found. For a positive Jm’ one also evaluates cj of the last
column of Table 1 by letting j equal one through the value Jm.
Having the constants cj, one can then find the I.C,+ using

y 0y = y® ) +e k=01, ..., nl

J 4k-n+l °
m

where cr =0 for all r <0 .

The impulses existing at the origin for the function y(k)(t)

(where k = 0,1, . . . , n-1) are of

order Jm+k-n and magnitude ¢

" L " .

n "
1 €J 4k-n-1
m
1 1] . "
v €3 4k-n
m
. ) . (k)
Obviously, if Jmfk-n < 0 , no impulses exist for y" ~(t).

Example

Given the transfer function

55° + 25% + 35 + 2

T(s) =

s + 253 + s2 4+ s +1



x(t) = e.3t sin 2t

1

the input
and
y (0)
y'(0.)
y" (0—)
y(B)(O_) =

find the "initial conditions" at t = o, .

We have
b =2
o
b1 =3
b2 = 2
b3 =5
Using Table 1
J =3-2=1

m
o = 1(2) = 2

Then

Y(k)(0+)

y (0
y'(0)

NORS

1

a = 1 n=4
a, = 1 m= 3
a, = 1
ay = 2

c = (2)(5) =10

1
1b2 -c. [as - (-3 + 9J

C; = ¢

= (2)(2) - 10 [2+6] = 4-80

= -76

y® ) + e,

10

= =77

30.
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Finally, y(t), y'(t), and y"(t) have no impulses at the origin while
y(3)(t) has a zero order impulse of magnitude 10.

It is a matter of convenience whether to use the direct
algorithms for specific inputs or to use the general algorithm of
Equations (30) and (3i) for the product of the transfer function and
the input transform. It may be convenient to program the algorithms
on a digital computer. In this case, it is probably simpler to use
the general algorithm and have the program multiply the transfer func-
tion by the transform of the input. Computer programs of both methods
have written in Fortran IV and are in Appendix III with a brief
description.

The foregoing discussion assumed that the Laplace transform
of the input could be written as the quotient of two polynomials in s.
While for most practical problems, the input meets this con&ition, it
is of interest to consider some functions which do not. One can
examine Laplace transform tables(lz) and intuitively'see that the
complete solution of the system for such an input would have to be
determined numerically in most cases. A fractional power of t is such
a function and it will have a transform with a fractional power of s.
The product of this time function with the system transfer function
will also have fractional powers of s. If the conventional initial-
value theorem cannot be applied because the limit involved does not
exist, the modified initial value theorem won't work either since
division of the product function, numerator by denominator, will
result in fractiomal powers of s. The output has negative fractional

powers of t, and there is no limit point to the right of the origin

(12) Reference 6, pages 328-335.
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for the output function.
In general, the modified initial-value theorem cannot be used
unless the input function can be reduced to a quotient of two poly-

nomials. Otherwise the I.C., can be found only if

(13)

lim s" T(s) X(s) exists ,
s * @

where T(s) is the transfer function of an nth order system and X(s)
is the input. A possible way to reduce a function to a quotient of
two polynomials is to expand all non-polynomial expressions within
the function in power series. Usually, only a few terms of the series
are needed for the purpose of applying the modified initial-value
theorem. |
Example

Given F(s) = taﬁl( % )

£(0)= 0 find £'(0)) .

Using Equation (17)

] - . 2 'l.a__j'
f (0+) = lim [s tan” T | (33)
s
and the expansion(IA)
3 5
laay _a2a _la  la
tan (&) = s "3 53 + 5 35 e o e

(13) Reference 8 provides some useful techniques for evaluation of
indeterminant limits.

(14) Reference 6, page 373.
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we get
3 5
' - 14 Jla la :]
f (0+) = lim s[a 373 + S 4ttt

§ °* ® S S

Using the modified initial-value theorem

£'(04) =0 ; O order impulse of magnitude a at the origin.



5. GENERALIZATION TO LINEAR SYSTEM
5.1 Introduction
In previous chapters, the systems considered were assumed
to be:
1. Single input-single outéut
2. Linear
3. Time-invariant
4, Without delay paths
In addition to the requirement on the input that it be a single input
related to the output by either a single differential equation or a
single transfer function, the input was assumed to be a single func-
tion of time rather than the sum of several elementary functions.
While the above assumptions are valid for the usual systems-
analysis problems, there are times when one or ﬁore of these assump-
tions do not apply. This chapter is concérned with extending the
previously developed techniques to the more general type of linear

system.

5.2 Composite Input Functions

System analysis frequently makes use of elementary functions
such as the step and the ramp functions. In Chapter 4, algorithms
for specific input functions were develobed. If the input function
is the sum of several functions, the assumption of linearity allows
the superposition property to be used to simplify analysis of the
system.

Suppouse the input function is written as the sum of terms

- 85 =
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x(t) = klxl(t) + k2x2(t) + ...+ kaL(t) (34)
where

x (8), x,(8), « . ., % (6)

are elementary input functions, and the coefficients

kl’ k2’ « ® % 3 kL

are constants. Following Equation (23), denoting the system transfer

function by T(s), the Laplace transform of the output is given by

Y(s) =‘T(S) [klxl(s) + kzxz(s) + ...+ kaL(s)] + I.C. terms (35)

From Equation (35), the effect of the input is equivalent to the sum
of effects of each term of the input. The system is not linear in
the strictest sense since superposition does not hold except for the
case of zero initial conditions. If the particular solution of the
system is considered separately, one can apply the property of super-
position. To obtain the I.C.+ , the effect of each input term can be
separately determined using Theorem 2 or appropriaté algorithms. The
net changé in the I.C. is the sum of the separate changes due to each
term of the input. If numerical integration techniques are employed,
it may be convenient to compute the responseAdue to each input term
separately. The response due to the entire input function will then
be the sum of the separate responses providing the effect of the I.C._
- is correctly included. One way to correctly account for the I.C..

effects is to compute the individual responses for zero I.C._ and
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then add the sum of these responses to the zero input response
corresponding to the actual I.C._ . Another way is to compute the
separate responses corresponding to zero I.C._ for all but one of the
input terms. For this remaining term the values of the I.C._ are
taken as the actual values. This second method combines the homo-
geneous solution with the particular solution for one of the input

terms.

5.3 Multiple Input-Single Output Systems

If a system has several inputs not all applied to the system at
the same place, the system is a multiple input system. If the system
is additionally a linear, fixed, single-output system, the Laplace

transform for the system output can be expressed as

X(s) = Ty (s) % (s) + T,(8) X,(8) + . s o T () X () (36)
Qhere

X (), Xy(8)s « + v s X ()

are the Laplace transforms of the inputs, and

T, (), Ty(8)s « o o Tp(s)

are the transfer functions defined by

- 1)
T.(s) = _
i X;(s) |1.C. =0, Xj(s) =0 for all j # i
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If the transient response is to be obtained in the time
domain, Equation (36) must be transformed into a differential equation.
Assuming that all the transfer functioﬁs can be expressed as the ratio
of two polynomials in s, Equation (36) can be expressed as
L .

P.(s) X,(s) +P, (s) X,(s) +. . . +PF (s) (s) :
Y(s) = 1 1 2 e L XL + I.C. terms (37)

D(s)

where D(s) is a common denominator for the transfer functions. Unless
D(s) is the L.C.D. (least common denominator), its order will be
higher than that of the L.C.D. Dropping the I.C. terms, multiplying

each side of Equation (37) by D(s), and then using the transformation
sn - pP
where D° is the differential operator

dP

dtP

one has a differential equation of order equal'to that of D(s). The
degree to which the denominators of the transfer functions can be
factored determines how low an order D(s) can be found. If one is
forced to a time domain-solution it is usually because the denomina-
tors of the transfer functions cannot be factored, aﬁd the D(s) poly-
nomial may therefore be the product of all the denominators of the
transfer functions.

1f the Modified Initial-Value Theorem is applied to Equation

. (36), for the jth derivative of the output it is clear that
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L
. T“ .
y(j) (0-*) . y(J) (0-) + /:—‘ A(i) (38)
i=1
where
A(i) = lim® [sj+1 T, (5) Xi(s)}

§ >

The higher the order of the resulting differential equation, the
greater the number of I.C._ must be specified for the system. There
is a minimum number of independent conditions which will uniquely
determine the state of a system and this so-called order of the system
is independent of the particular representation of the system.(15)

When a system can be represented as a combination of ideal
R-L-C elements, it is convenient to use state variables to represent
the system. Usually the state variables can be chosen so that they
are linearly independent quantities. Their initial values then

represent the minimum number of quantities which characterize the

initial state. State variables are considered later in this chapter.

5.4 Multiple-Output Systems

A multiloop system is usually first specified through n lin-
early independent simultaneous differential where n is the number of
unknowns appearing in the equations. The equations are Laplace

transformed so that the equatiohs for zero I.C. are of the form

(15) Reference 5, page 52.



(s) +D..Y

D11Y 12 2(s) +o.t DlNYN(S)

1

D, ¥ (s) +Dy,Y,

R
DNlYl(S) + D YZ(S) +...+ DNNYN(S)

N2

where Dij’ Bij are polynomials in s.

representation is

Dy Dy +er Dyl Y00
Dy Dy, eee Dy Yz(s)i
Doy Bgy wee Do Y, (s)
} bt
or

DY=BX

(s) +...+ DZNYN(S) = B

21

39'

= Bllxl(s) + BlZXZ(s) +...+ BIMXM(S)

Xl(s) + BZZX (s) +...+ BZMXM(S)

= Blel(s) + BNZXZ(S) Fouot BNMXM(S)

The corresponding matrix

' (39
wrol o Bléﬁ Xl(sgé
.. BZM; xz(s)é
;

. . ; (40)

. . !

. . E
sss B (s)

| XS

4L

Suppose that the highest order derivative for each output Yi is equal

toL..
i

N
N
2.l
i=1

The highest possible order of this system will be

and the determinant of the D matrix will be a polynomial of this

(16)

order .

the result is

(16) Reference 5, page 38.

If the inverse of D multiplies each side of Equation (40),
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-1
Y(s) =D "B X(s) . (41)
Each row of this matrix is of the form

Pilxl(s) - Pizxz(s) + ... + PiMXM(s)
D(s)

¥, (s) = 42)

wvhere

D(s) = Det [D(s)] .

Comparing Equation (42) with Equation (37), it is seen that the system
is reduced to N uncoupied multiple input/single output systems. To

obtain the response of each Yi(t)’ the initial value of Yi(t) and its

S |-
3 X

i=1

derivatives are needed. The modification of the I.C. and the transient
solution is handled as discussed in the previous part of this chapter.
If the response of more than one input is required, the I.C._ for the
additional outputs cannot be arbitrarily chosen if these responses are
to correspond to the same initial state of the system. The method of
obtaining the X.C._ depends on how the initial state of the system is
specified.

A system composed of elements which are equivalent to R-L-C
elements can be handled most conveniently by state variables since
the initial state is often given in terms of the initial values of
thé state variables. The mext section of this chapter considers the

state variable approach.
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5+ ‘State Variables
5.5.1 Introduction

The state variable approach to system analysis is most advan-
tageous for complex systems. Even for very simple systems where the
classical time domain and transform methods are more direct than state
variable analysis, the state space approach offers an intuitive feel
for a problem. As the complexity of the system increases, computation
by computer becomes the only feasible way to solve such analysis
problems. Not only does the state variable approach lend itself to
complex linear systems, but it also provides a conceptual technique

for handling non-linear systems.

5.5.2 Normal Form

If a system is linear, the set of system equations can be

expressed in the "Linear Normal Form"(17). This matrix representation
is

1— ; a aj 17 : b b— ;T

1 11 12 °°° lKé 1 11 12 °°° "IN

. |

i .

9 831 822 °vc Y |2 byr Byp cer Pyl 1%y

A3\ . |23; 833 ++- 33k |93, 4 |[P3yp Pypoeee Pyl 1 %5

ax k1 %2 %k | % bey Pro Pry| | %y

L _] - _l PR L o

(17) Reference 5, page 37.

(43)
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0 Ten e onl [u] [ i e 4l 4]
1 11 iz ** SIK 1 11 12 **° "IN 1
Yy €1 S22 *** Sx| |92 dgy 922 ccc Gy [ *2
- = . . . [} + . . . L[] (44)
l_yM °m1 M2 Sk (% i M2 o Yhaw|  (*w
| e L L _ Lo
where ¥4 d=1,2,...,M) are output variables
Xy o=1,2,605H) are input variables
q; i - 1,2,..;,K) are state variables
and aij; bij’ iy’ dij are in general functions of time

There are various procedures for obtaining a state variable
representation of the above form. If the system is also time-invariant
_and a single-input, single-output system characterized by the differ-

ential equation

-l T g Ix() (45)

P ) () = @3 0" + ;0"

(ﬁk + o

a standard algorithm is available for generating the A, B, C, and D

matrices. These matrices are(ls)
a= [o 1 o0 ... 0| B= [b ]
0 0 1 ... O bz:
. ° . - . (46)
0 0 0o ... 1 bk'
L_-dk %-1 %-2 ™1

(18) Reference 5, pages 40-41.
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C = [1 0 0 ... o] D= [ d ] (46)
where
d =f
. o
Q’ld + bl L Bl
dzd + albl * b2 = 32
. «7)

@ 4 O by F g by T A =

o d -+ dk-lbl + ak_zbz + oo b albk-l + bk = Bk

One of the major advantages of using state variables is that
the linear normal form results in a set of first order equations which
can be handled either through manipulation of the matrix equations,
Equations (43) and (44), to obtain the fundamental matrix, or through
iterative numerical computations in the time domain.

If the conditions of the system represented by Equation (45)
are given in terms of y(t), y(l)(t), cees y(k—i)(t) at t=6_, the I.C.,
in terms of the output can be obtained using the algorithms previously
developed and then the corresponding I.C.+ of the state variables can

be found using the algorithm of Equation (48).



bt

y(0)) Bx(0)

y(l)(0+) - Box(l)(0+) - b,x(0,)

q,(0})

4,00 = y 20 - pxPop - vxPen - vxPoy  ws

g, 0 = y* Py - px* Py -5 x Py - .- p_x® oy

The above algorithms for generating the state variable matrices
do not represent a unique state variable assignment for the system in
that there are numerous possible assignments for a given system. The
particular choice of state variables resulting from these algorithms

can be simulated conveniently on an analog computer,

5.5.3 Application to Ideal R-L-C Circuits

To simplify analysis, the system being considered can often be
represented as being composed of ideal R-L-C elements. The state
concept provides a simple procedure for analyzing the circuit since
each voltage across a capacitor and each current tﬁrough an inductor
can be considered as a state variable. One usually thinks of the
initial state of such a system in terms of initial charge or voltage
on capacitors and initial currents in inductors. With practice, one
can obtain the state variable equations by inspection of the circuit.
The I.C._ are taken as the initial values of the state variables. If

the system is simple, it will be apparent.what the I.C. will be.

Otherwise one can obtain the differential equations corresponding to
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the circuit by manipulation of Equations (43) and (44). From Equation

(44), for the single output case,
y = cqqy tepdy Foeen Fopdy +dyx, hdyx, b dexy (49)

Differentiating Equation (49) we get

y = clél + czéz + ...+ cKéK +—d1£1 * dziz + .o F dNiN
One then substitutes the expression for the derivatives of the state
variables using Equation (43). The differentiation and substitution
is repeated until k simultaneous equations are obtained. One can
then solve for y(k)(t) in terms of y(t) and its k-1 derivatives by
manipulating these equations. The I.C._ of the output are found by
using these same equations for the input functions zero. After the
I.C., are computed using the techniques discussed earlier, the reverse
process is used to obtain the I.C.+.for the state variables. The fol-

lowing example illustrates this procedure.

5.5.4 Example

Consider the circuit

L Ty
(v y Y g4 YY) & L= L,= 1 Henry
v

C,= .5 Farad
R, S 8
24| y(t) R1= 1 ohm
q —l_c
3], 3 R.= 4 ohm
+ + £
e, el(t) = §(t)
: . e, (t) = U(t)
Figure 4

State Variable Assignment for a Simple R-L-C Circuit



which is initially at rest. The state variables have been chosen as
currents through Ll and L2 and the voltage across CB’ as indicated.

The output is the voltage across R2. Then from the circuit

S
4 "9yt 593=0

E g - ql(s+l) =0
E2 + 45 + (s+4)q2 =0
y = 4q,
The state variable equations are
c T 1M1 Ta o1l
q -1 0 1 q; 1 O E1i
!
Ll = - B - !
q, 0 -4 -1 q, + 0 -1 EZ!
-
&3 -2 2 0 1, 0 0
L e M L -
vy | = [ 0 &4 O ] 4 [ 0 0 ] E. |
_}’(t)_l = ql 1
q, + E2
q
3
L
y = 4q,
y =4 [- 4q2 - 45 - E21 = - 4y - 4q3 - 4E2
y = - 4y - 4[- 2q1 + 2q2] - 4E2 = - 4y + 8q1 - 8q2 - 4E2
y = -4y + 8[- 9 +qq ¥ El - qz] - 4E2

.- . l—- R ; & ] - "o
by + 8L q, - %q3 + dq + El d, 4E2

]
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_ . _ L] _ _ _ . _ - = ° - LX) . . -‘ ‘
Ly 4E2 -+ 8[ q2 q2 + E1 4, 4q2 EZ + %( EZ q2 4(12)_j
_ oo _ oo r- - . - ]/" _ _ } . ]

by 4E2 + 8L qu 4q2 2q2 + E1 E2 2E2
- 5y - 8y - 10y - 8E, - 4E, - 4E, - 8E,

Using the general algorithm for modifying the initial conditions

this differential equation and the assumption that the system is

initially (t=0_) at rest, one finds

y(04) =0
y(0) = -4
y(0) = 24

Using the same equations

4q,(0,) = y(0) =0

|
o

y(04) +4y(0,) = -4q5(0) - 4E,(0,)

4 - (4)@A) =0

I

4q,(0)

q5(0) =0

]

¥ = - 4y(0) + 89, (0) - 8q,(0) - 4E,(0)
24 = (-4)(-4) + 8q(0,) - 8(0) - 4(0)
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5.5.5 Direct Modification of State Variable Initial Values

| The state variables ju§t as the I.C._ can often be determined
dire&tly by inspection of the system, i.e., without first obtaining.
and solving the differential equations of the system, and then
generating the state equations. Hence, it would be more convenient
to be able to obtain the I.C.+ of the state variables_frém the
corresponding I.C._ of the state variables without going back to the
differential equation of the output. In the previous example, recall
the considerable work to obtain the differential equation from the
state equation. For a.complex system such as a multiloop circuit,
this procedure could be an exhaustive task. To make the state
variable approach much more convenient as well as useful, we now
proceed to a technique of determining the I.C., directly.

Ifra system is linear and time invariant, the matrix Equation

(43) can be Laplace transformed in a manner similar to that of a

scalar equation. Thus we have

sIQ(s) - q(0.) = AQ(s) + BX(s) (50)

[s1 - 2] ato) = BRCo) + 200

where I is the identity matrix. If the state variables are linearly

independent, it is clear that
dget [s1-A]# 0,

and therefore the matrix

4]
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exists and corresponds to the Laplace transform of the fundamental
: At : . . g
matrix, e— . With the assumption of linear independence, we have

-1

1
BX(s) + [S.I_ - é] q(0.) (51)

F 1
Q(s) = le - éJ
Applying the modified initial-value theorem to Equation (51), and

recalling that for zero input
a(0) = q(0) ,
we get

.q_(o_[_) = g(o-) + 1lim¥* [S.].:.(S}, - _A:)-l E}E(S):, (52)

s 7 ©

where thé limit is taken in the sense of Theorem 2. Comparing Equation
(52) to Equation (22), with k=0, m=0, n=1, and a = -1, the two
equationsrare very similar. In Equation (52), the limit is taken

for each element of the matrix indicated By the brackets. It is
important to note that once a convenient set of state variables is

obtained for a system, along with the corresponding I.C._'s, the

I.C.

+'s for the system can be found directly using Equation (52) even

for a multiple-input, multiple-output system. The minimum number of
state variables that are necessary to completely characterize an

entire system will usually be obtained. If the state variables are

not all linearly independent, the determinant
det [sl = é] = 0

and it will be apparent from matrix algebra which of the state

variables are redundant,



5.5.6 Example Using Direct Modification of State Initial Values

50.

Consider the circuit of the previous example in section 5.5.4 .

We have
[sl - _A;] = s+1 0 -1
0 s+ 1
2 -2 s
x = | 11
1
s J
o
Then
-1
[s_I_ - A] = (s3+ 452+ 2s)
(2s)
. -2(sz+ 4s)

, B= 1 0

0 <1

0 0

@) = [ o
0
0

2

(2s) (s™+ 4s)

(s3+ 52+ 2s) -s(s+l)

2s(s+1) (s3 2

+ 58+ 4s)

(s3+' 5s2+ 8s + 10)

Substituting these matrices into Equation (52), we have

q1(0+)7 0 1 s 0 O
= %
qz(O +) 0 + lim* |0 s O
8 = @
q3(0+) Y 0 0 s
. ] I L _ L. _J
= lim* — B

§ * @

<s3+ 432+ 2s - 2 )
&3+ 552+ 8s + 10

/23-52-5-21 \
\ 63+ 552+ 85 + 10/

(-2s2- 8 - 25 - 2\

s3+ 5s2+ 8s + 10

1 0
-1

[:S_ZL - 5_] 0 -1
0 0

1

= 0

0
e, o

— -

o |-
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5.6 ;Piecewise Linear Inputs

The type of inputs so far considered have been singularity
funcﬁionsiwith the origin as the only singular point. One may wish
to analyze a system with an input which is composed of several
singularity functions not applied at the same time. Such an input
can be expressed as

x(t) = U(t)xo(t) + U(t-tl)xl(t-tl) + .. + U(t-tn)xn(t—tn)

where

0<t, <t,<...<t
) n

1 2

A straightforward technique of handling such an input is to apply
the superposition theorem., That is, calculate the effect of each
singularity and any derivatives associaﬁed with the I.C. on the
output, and take their sum. If numerical integration is being used,
the effect of each singularity is simply added to the response after
the point of its occurrance is reached. After this point, the input
function associated with the singularity is included in the total
input function. A similar procedure is followed if the solution is
obtained through classical time domain techniques. The conditions
of the system are found at a point just before a given singularity
occurs. These conditions éré then modified through the techniques
of the modified initial-value theorem, Theorem 2, to account for the

effects of the singularity.

5.7 Systems with Delays

In general, delay paths in a system are difficult to handle

by conventional techniques. The initial values of a function
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containing a delay element presents no problem since the path or loop
in the system containing the delay can be considered as an open
circﬁit. If the path containing the delay has no feedback paths
associated with it, the delay element can be, in effect, pushed back
through the system until its input is simply treated as part of the
"input of the system. Only in this case, can a system with a delay
element be handled easily when finding the transient response since

in this case the delay is incorporated within the input function.

5.7.1 Example of a System‘Having Delay

Consider the block diagram of a system with delay

V08— T > T
7V, (s)
< T3 b>> g 1%
Figure 5

Block Diagram of a System with Delay

We assume that the system is linear and time-invariant and that the

transfer functions, Tl, T2, and T3 have no delays. To push the ele-
ment back to the input, block diagram transformation is accomplished
using standard techniques(lg). Splitting the node which follows Tl’

and then pushing the delay backwards, the block diagram becomes

" "(19) Reference 10, pages 262-267.
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N Sl
VI(S) r g Tl o T2
S vV, (s)
e 2
V1(5h>- i > T,
Figure 6

Transformed Block Diagram of Figure 5

It is clear that as long as the delay element is not within

a feedback loop, the delay can be pushed back to the input. The

delayed input is then considered as a new input function.

5.8 Time-Varying Systems

~Time—varying systems are cﬁaracterized by the differential
equations having coefficients which are functions of time. Except
for the simplest types of time-varying systems, solutions must be
determined by approximate techniques such as series expansions and
numerical integration. The response to an input function cannot be
uniquely determined from just a knowledge of the system elements,
input, and stored energy initially in the system as was done for a
fixed system, because now thé response depends also on the exact time
of application of the input. This of course can be implicitly
specified through additional initial conditions. In the usual
treatment of time-varying systems given in textbooks, the initial

conditions are considered simply as arbitrary constants.
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If the coefficients of the differential equation of a system
are continuous functions of fime, it is clear that they can be con-
sidered constant over the infinitesmal interval during which the
input is singular. They can be evaluated at this point of singular-
ity since they are not functions of‘fhe output. A simplification
that can be used if the coefficients change slowly is to consider
them as piecewise-constant functions over small but finite intervals
‘of time(zo) As the transition from one of these intervals to the

next takes place, the coefficients go through finite discontinuous
jumps.

If the time-varying coefficients are polynomials of time,
Laplace transforms can be sometimes successfully used to obtain the

transient response. Using the property

k dkF(s)
k

k = s
L{ e f= D x

where

F(s) = L { £ }

the time domain differential equation is transformed to a kth order
differential equation in terms of F(s), where k depends on the
highest power of t in the time domain differential equation. It is
clear that additional conditions may be needed for the solution of
this new differential equation and that this equation may be more

difficult to solve than the original equation.

A time-varying system in a practical engineering application

(20) Reference &4, page 469.
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will usually be more complex than can be efficiently handled by the
analytic techniques of analysis. Numerical analysis can often give
a general indication of the system's performance, but analogue

simulation is the most practical approach to this and more complex

problems.



6. CONCLUSIONS

The problem of relating the initial conditions just before

and just after time zero for linear systems has been investigated.

It is often the case that the I.C._ are different from the I.Cc.,

when the input to tle system is singular at the origin. The
modification necessary to obtain the positive-limit values has been
accomplished through consideration of the initial-value property of
the Laplace transform, which properly takes into account singularities
ﬁt time zero.

Algorithms have been developed for‘treating linear, fixed
systems from both the differential equation and the state variable
standpoint, as an extension of the way in which the Laplace transform
accounts for singularities in the output and its derivatives. Using
these algorithms, one can directly and conveniently obtain the I.C.,
for the linear, fixed system from the known I.C._ . This technique
is especially useful for the case of a piecewise-linear input which
has several singularity points.

Since analysis of linear systems is often accomplished with
digital computers, the algorithms have been programmed in Fortran IV,
Examples are used throughout the thesis to clarify the results of
various sections. Special consideration is given to R-L-C circuits
since their initial conditions can be directly interpreted in terms
of currents and voltages of circuit elements. A final generalization
of this approach considers the modification of initial conditions for
more complex linear systems of englneering interest such as those

with delay and multiple inputs.

- 56 =



APPENDIX 1

EXPANSION ALGORITHM

Al.1 Derivation of Algorithm

Given the rational function
L

b s" + bm_lsm"1 +...+bs+b
F(s) = = = 2 , m=2n (53)

s +a s -+ ... +a,s + a

n-1 1 o
Dividing the numerator by the denominator yields

F(s) = b s " + {(b -bE D B A I
m m-1 m n-1 m-2 m n-2
m-n m-n-1
ees F (bm 0" b a)s -+ bm-n-ls + ose & bls +b }

Letting

co = bm
bl

m-1 bm-l " %%n-1
]

bm-2 = bm-2 B coan--Z
.l

b =b - c a
m-n m-n oo

1 ]

m-n-1 " bm-n-l

]

m-n-2 bm—n—z

"
b =b

o o

= 57 =



We can write Equation (53) as

F(s) =

m-1 m-2

+ .

«e + b,s + Db

1

Repeating the division process, we obtain

F(s) =

m-n

+ b

' m-n-1 { 1 1
=l F 180 BrgBny e

+ b

m-n-1
bm-l o)S m-

) m=-2

. +a.s + a
o

+ (b

m-n-2

n-2

m-n-1"
//{ + a sn'1 4 ... +a,s +a }
n- 1 o

For convenience, let
L}
c1 - bm-l - bm-l- coan-
and redefine
] ] ]
bp-2 = Pu-2” Puo1®no1 = Ppea” ©
]
bm-3 = bm-3 - coan-3- clan-2
]
bm—4 = bm-4 T o%n-4" ©1%n-3
.l
bm—n - bm-n - coao - clal
1]
m-n-1 m-n-1" “1%
]
bm n-2 = bm-n-z
.l
b1 = bI
1
b =b
() o

1 b

1

n-3"

m—lan-z

- 58.

(54)

)sé- +

+oo.+bs""b}
1 ()
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Then Equation (54) becomes

m-3
S + L N + b
¥is) = COSm-n+ : Sm-n-l+ m-2 m-3 [¢) (55)

s +a s + .00 +a
o

To express the result of dividing the numerator by the denominator in

Equation (55), it is again convenient to let

c2 = bm-2 = bm-2- Coan-Z- clan—l
and redefine
L
bm-3 = bm-3 - Cotaed” S1%5.0" €9%n-1
L]
bm-4 = bm-4 - coan-4 clan-3- CZan—2
L
bm-S = bm—S B coan-S- clan-4- c2an-3
1]
m-n = bm-n B coao B clal B c2a2
]
Pa-n-1 = Ppin-1 - Gy = Safy
]
m-n-2 ~ Pm-n-2 " Bg

m-n-3 bm--n--3

Continuing this process, the result of the next cycle is expressed in



terms of

8

bt % "% ©1%n3" %" Sa%h-1
1
biz Thys ™ 5™ %18, 4" ®oPun" S9Pn

bm-n = bm-n - coao B clal B c2a2 B c3a3
| ]
b=l ™ Bl "% T %% T %3%
]
bones T Pig-u-2 "G T 3%
1]
m-n-3  m-n-3 T C3%
]
bm-n-4 - bm-n—4
by =5
1
b = b
(o] (o]

By now the pattern is established. For 0 <k < m-n , we obtain

B P CoTak” S1%hakit” “oPaain” "~ C4Pndeyy” vt
k-1
_ .
585" Cea1®a1 ™ Backe ;2 €i%n+j-k ; k=1,2,...,m-n
j=0

60.

ar=0 for all r <O



Combining the additional restriction on a_ yields

Since Cj= 0 for all

and get

k-1
N
/—.—J ¢ j an'{'j -k
j=k-n
-1
- ZE: Ckrint T
i=-n

j <0, we restrict the upper

bm-k

i

c .a 5
k-i n-i

[ s
Y
[ure 8

k=1,2,...,m-n

ar=0 for all r < 0

61.

limit of the summation

(56)

To determine the coefficients of the reduced fraction, we find

the coefficients bj for the last cycle.

Observing the pattern

developed in the first three cycles, we obtain

bn-l = bn-l- cann—m-l- claZn-m- o
m-n
S
L - Y
k=0
1
ba-2 = Ppoa” Co2gnmea” 1%20-m-1" *°
m-n
e Zgj “k?2n-m-24k

P
o

.
3

" %kPon-m-24k” vt T

.
b

T %%kPon-m-14k"

ar= 0 for all r <0

ar= 0 for all r <0

-c a =
m-n n-1

c a =
m-n n-2
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Or, in general

ar= 0 for all r < 0

To simplify the notation, let n-j = i
]
b, = b, - Y;ﬁ c, a : ar= 0 for all r <0

]
i .

We have converted Equation (53) to

énd also denote di =b

m-n m-n-1_ m-n-k
F(s) = cos -4 c,s + ... + c, s + ...+ cm_n+
d " Ld 2% ... +ds+ad
n-1 n-2 1 o (57)
sn + a sn_l+ ee +a.s 4+ a
n-1 1
where
¢c =b
() m
k
e = bm-k - :E: CroiPnoi k=1,2,3,...,m-n (58)
i=1 ar= 0 for all r <0
m-n
A =b, - O ¢, a : i=0,1,...,n~1 (59)
i i Z.s Tk n-mik+i ? 2Tttt
k=0

ar= 0 for all r < O

If m < n, Equation (53) is already in this form.
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Given
255 + s4 + 352 + s + 1
F(s) = 3 ?
S + s - s +1

then the coefficients are

bo =1 b3 =0 ao =] m=5
b1 =1 b4 =1 a1 = -] n =3
b2 = 3 b5 = 2 a2 =1 m-n = 2

c =2

(o]
k

% TPk T 2, Ckeif3ep 3 kel,2
i=1

ar= 0 for all r < 0

(2]
]

1 1-(@2@) =-1

[g]
L}

2 =0 - (¢ - @1 =3
Using Equation (59)

2
d, =b - ) 3 i=0,1,2

ar= 0 for all r < 0

2N
]

1 - (@3)() = -2

d

I

]
(9]

1 =1 - ¢GDA - @)

dh=3-@M0 - CDED - GA) = -3

Therefore we cah write the given function as




-3s% 4 55 - 2
s” + s2 - s +1

F(s) = 252 - s+ 3+

This result is easily checked by synthetic division.

64.



APPENDIX 2

DERIVATION OF INITIAL CONDITIONS ALGORITHM

A2.1 General Equations

Given
B sP+ B _1sp-1+ ese F Bo bmsm+ bm_lsm_1+ sns bo
Fls) ==EFm oy = — = X(s)  (60)
slea 974 L.+ s"ta "+ ... +a
q-1 o n-1 o
’ ; () _ LK) '
and from Chapter 4, Equation (30), y (0+) =y 0.) + 9p+k+l-q
where c =B
o p )
i
c,.=B , - K:ﬁ c, A . ; =1,2,...,p+n- 61
j bej = /., Cj-ttqet j 2, p+n-q (61)
i=1

c ,B A =0 for all r <0
r* r- t

and Equation (31) regarding the impulses of f(k)(t) at the origin of

order and magnitude
ptk-q S
ptk-q-1 2
ptk-j-q %y (31)
. cp+k-q-1
0 c
ptk-q

find expressions similar to Equations (30) and (31) in terms of the

input constants and the constants.
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A2.2 Impulse Function (Lth Order)

66.

x(t) = o 6% (p)

then
L L

X(s) =a s = ;s o =o

and Equation (60) becomes after multiplication
o.b sm+L + o.b sm"]""1 + ... +.b sL
1 m 1 m-1 1o
F(s) = n n-1
s <+ a s + sse F a
n-1 o

Comparing to the left hand side of Equation (60)

p = miL
" =R
A, = a,
k| J
B =0
(o]
B, =0
= o b
BL Cl,1 o
B = %by
Be =ob 1
B = b
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from Equation (61)

o 1m
3
c, =ab , - Yk c., .a : ji=1,2,...,mtL
j m- j éﬁJ j-in-i
3=l a ,b=0 for all r < 0
r’r
®) 0y L () | )
y (Y =yr(0) + ChiLtlik-n Gy = 0 for all r <0

from Equation (31), y(k)(t) has impulses at the origin of

order and magnitude
mHL+k -n c
o
1 CorLk-n-1
. CmHL4k-n

A2.3 Power of t: x(t) = dtL

o

-1 ¢) 1 N i
X(s) = L~ TId @ = () (L)
Equation (60) becomes
o.b sT + o.b o ee. + b
F(s) = 1 m 1 m-1 l o
n-+L-+l n+l n+L-1 L+1
s + a s + a s + ... +as
n-1 n-2 o

Comparing to the left hand side of Equation (60)

B, = b.o
k| i ¢

p =m

Nal
"
=}
e
| ond
+
-t



>
N =
| !
] [
= o

j

= - N
o Tl L T B TP

i=

.
’

L

y(k) (0+), = y(k) 0) + Cmik-n-L

y(k)(t) has impulses at the origin of

order and magni
mik-n-L-1 c
o
. ot~
0

jo=1,2,...,m-L-1

ar =0 for all r <0

cr =0 for all r <0

tude
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A2.4 Exponential Function: x(t) =« eBt

o !
X(s) = P - SR
‘va b s + a,b sm—1 +
1m 1 m-1 ttt

69.

]

F(s)

B. = o.b

j 1]
p =nm
q = ntl
An = (an-l- )
A= Gy Bayp)
A = a - Ra,

3 5-17 P2
Al = a - Bal
Ao - B ﬁao

From Equation (61)
co = 0’lbm
%
Gy = B0y = 2 cj-i[an-i’ Ba, 111
i=1

1.
J:

j=1,2,...,m-1

a

a

r

n

0 for all r <0

1
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(k) _ S _
y ) =y 0) + € een c =0 forall r<0

y(k)(t) has impulses at the origin of

order and magnitude
mik-n-1 c
o
3 “mtk-n-2
0 “mik-n-1

A2.5 Sinusoid: x(t) = o sin St

o

X(s) = _of o __1 o, =af

s2+ 62 s2+ BZ 1

B m n-1 .//(n+2 nt+l 2, n
F(s) =apb s+ ogb s "+ ...t ayb. [l ka s (an_2+ B)s

2

2 n-1 2 n-
)s' T+ (a B ) TH ..t

® (an-B% B ®n-1

2\ j 2 2. .2 9
(aj_2+-ﬁ aj)s + .0e + (ao+ B a2)s + 8 a,s + 8 ao)

j 1]
p =m

q = ni2
o] = By



2
An-l an-3+ B an-l
2
A =a, .+ a
j j-2 p j
_ 2
AZ -ao +ﬁa2
2
oy = Ra
2
Ao = B %
From Equation (61)
co = dlbm
<
_ _ 2
cj = dlbm-J /. cj-i [an-1+ B
i=1

where ar= 0 for all

y 0y =y 0y te

y(k)(t) has impulses at the origin of

order and magnitude
mtk-n-2 c
o
A “mtk-n-3
0

a =0 for all
r

ee,m=2
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A2.6 Cosine Function: o cos Bt = x(t)

o s CJL’ls
X(s) = 5= "3 2
s+ 8 s+ B
m+1 n
F(s) = dlbms -+ dlbm-ls + ... + albos

2, n 2 « n-1
(an_2+ B)s + (an_3+ B an_l)s - (an_l+

) j
ees + (a2, + a,)s8 "+ .o
a5+ B2y

p = mtl

B =0

o

B1 =.a1bo
B2 = albl
Bj = albj+1
Bm-l'l = Q’lbm

From Equation (61)
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// ( Sn+2+_a Sn+1+
n-1

2

g%a n-2

s T+

b n-2

2 2 2 2
+ (ao+ B az)s + B a;s + 8 a°>

q = ni2
An+1 = %n-1
2
An = an_2+ B
A =a_ ¥ Bza
n-1 n-3 n-1
: 2
A = a, .+ a
j j-2 H J
2
Az —ao +Ba2
2
Ay = R ay
2
Ao - B 4
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¢
I
Q
o

o 1l m
h|
- - N [ + g2 ] - -
cj albm-j ), %54 an—i+ B a o i) 3 1,2,...,m-1
=k a_=0 for all r <0
‘ “a=0 for all r >0
a =1
n
(k) _ J® ' = |
y (0 =y (0) + € iy c = 0 for all r <0
(k) ' .
y (0+) has impulses at the origin of
order and magnitude
mk-n-1 c
o
1 cm+k-n-2
0 “mik-n-1
A2.7 Hyperbolic Sine Function: x(t) = o sinh Bt
d .
X(s) = ;82= 212 d1=cxfi
s’ -8 s’ - R

This function is the same as the sine function except that in
the Laplace transform of x(t), the sign of 32 is reversed. From the

sine function derivation, one obtains for the hyperbolic sine

_ ) | _ a2 i )
cj = dlbm~j 4/, cj-i [an-i B an+2-i] s j=1,2,...,m-2
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where ar= 0 for all r <0
ar= 0 for all r > 0

a=1 r =n
r

y® 0 = y® ) +e

— cr= 0 for all r <0

y(k)(t) has impulses at the origin of

order and magnitude
mtk-n-2 c
o
1 “mtk-n-3
. “mtk-n=2

A2.8 Hyperbolic Cosine Function: x(t) = o cosh f3t

X(s) == = 5 3 al = ¢

This function is the same as the cosine function except that
in the Laplace transform of x(t), the sign of B is reversed. From the

cosine function derivation, one obtains for the hyperbolic cosine

-J(—l.

: ) 3
cj = dlbm-j - ] cj-i [an-i- B an+2-i] ; j=1,2,...,m-1
wel ar= 0 for all r <O

ar= 0 for all r > n
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y® 0 =y®o) ve

S g = 0 for all r <0

y(k)(t) has impulses at the 6rigin of

orde; and magnitude
mik-n-1 c
o
: “mtk-n-2
0 mik-n-1

A2.9 Time-Exponential: x(t) = ot e

o
1
(s-R) s - 2B + R s"- 2sB8 + B

m m-1 n-+2 n+1 2, n
F(s) = {albms + dlbm-ls + ee0 + albo}///{s + an_ls + (an-2+ B7)s

2 n-1 2 n-2 2 i
+ (an_3+ B an_l)s + (a )s + .. + (aj_2+ R aj)s

18 - ZBan "

2 2 2 2 n-+
+ .00 + (ao+ B a2)s + R ays + R a_ - 2s -1

- - i - }
“en ZBaj_ls i Zﬁaos

B, = a.b, m=p = n42
j 1] J . 1



n-+1 n-1
A =a - 28a_ .+ ﬁz
n n-2 "n-1
A =a_ .- 28a_ + ﬁza
n-1 n-3 “"“n-2 n-1
_ 2
An-2 = 8nm 23, 5t By,
A =a, .- 2Ra, .+ Bza
3 j-2 gk hj
A =a -.2Ra +»ﬁza
2 o B 2
A = - 2Ra  + Bza
1 o 1
2
Ao = + 8 a_
From Equation (61)
o © albm
h|
- 2 :’
Sy = Hyb, g~ 2. Bgag [an-i 2Ba 411t Banpy
i=1
j=1,2,...,m-2
A 0 for all r <0
g s 0 for all r > n
a =1
. n
(k) _ () _
y (0+) =y () + Cortk-n-1 c =0 for all r <0

y(k)(t) has impulses at thé origin of

order and magnitude

mik-n-2 c
0
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order and magnitude
1 “mtk-n-3
@ “mtk-n-2

A2.10 Exponential-Sine: x(t) = o eBtsin Yt

oy dl
X(s) = = = 5 5 o, =a Y
s™=- 2sR + (B + vy

Compare this function of s to the one corresponding to the

ARt

+ o ; v 2 : ; :
time-exponential function, ote’ ", Where B appears in the derivation

for ategt, replace 32 by Bzi-yg. Hence,

From Equation (61)

= o b
co oll m

j .
¢c. =ab - c [a - 2Ra + (62+ yz)a ]
R j-i Ln-1" “Pp41-1t n42-1

i=1
j=1)2)°'03m-2
ar=‘0 for all r <0

ar= 0 for all r > n

cr= 0 for all r <0



y(k)(t) has impulses at the origin of

order and magnitude
mik-n-2 c
o
. cm+k-n~3
b cm+k-n--2
A2.11 Exponential-Cosine Function: x(t) = aeBtsin Yt
' o, (s-3)
X{s} = a(sém = 12 2 gy =a

(s-B)"+ vy (s-87) + vy

Cbmpare this function of s to that of the exponential-sine
function. Since the denominators are the same for these two
functions of s, the corresponding product functions, F(s), will also
have the same denominators. Thus

p = mHl q = nt2

2. 2
Aj = aj_z- ZBaj_1+ R+ vy )aj

The numerator of F(s) is

m+1 m m-1
dlbms -+ al(bm_l- Bbm?s -+ al(bm_z- Bbm_l)s + ... F

- j = .
al(bj_1 Bbj)s + ...+ rxl(b0 Bbl)s dleo

From Equation (61)

c. = .o

o lbm

78.
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k|
_ ) % ) 2, -2
€% L Bbm—fl-j) > cj-i[an-i 28 414t BtV )an+2—i]

m-j &
i=1
j=1,2,...,m=-1
where ar= 0 for all r <0
R % .
ar= 0 for all r > n
a=1
n
(k) _ (k) B
y ) =y 7(0) +te n c.=0 for all r <0

y(k)(t) has impulses at the origin of

order and magnitude
mtk-n-1 c
o
1 otk -n-2

0 Fm+k-n-1

A2.12 Time-Sinusoid Function: x(t) = ot sin Rt

o.s
X(s) = —2o8s = . @ =2a8

(SZ+ BZ)Z (SZ+ 32)2

_ m+1 m, ] { n-t4 n+3 2
F(s) = s buﬁ-albm_ls F oo F albosf/// (s '+ a s + a o8 +

a sn+1+~a st ...+ aj_4sj+ eeo aOSQ) : (2325n+2+

n-3 n-4

. ZBza sn+1+ ZBZan "o Zﬁzaj_zsj+ ves + ZBzaosz) +

n-1 —ZS

4L n 4 n-1 4 3 4 }
(B's+A a 18 F ... + f ajs + ... T8 ao)
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[

= mtl

j=1,2,...,m-3

ar= 0 for all r <O
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ar= 0 for all r > n

a =1
n

k)

y(k)(o.,.) = y( (0) +c

ok =i D cr= 0 for all r <0

y(k)(t) has impulses at the origin of

order and magnitude
mtk-n-3 c
o
L b CnHe-n-4
v “mik-n-3

A2.13 Time-Cosine Function: x(t) = ot cos At

2 2
cl,(52__ R2) dl(s - R7)

e P A Gl 0 M L
(P B (s%+ 52

Since the numerator is the same as that of the function of s

corresponding to the time-sine function, it follows that

2 4
A, = a,. + 2R7a + R 'a,
37 %50 PR TR
The numerator of F(s) becomes
m2 m+l AL m 2 m-1
CYlbms * O/lbm-ls * O’1(br11-2 8 bm)s il Cl’l(bm-?:- A bm—l)S u

2 2. . 2 2 2
-ao+ b. - b, e e e - - -
al( 3-2 B J)s + + cvl(bo B b2)s alﬁ bys alﬁ b,

2
Th & " =
en Bj dl(bj-Z R bj) , if br 0 for all r <0

L 1] " r>n
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From Equation (61)

c, = al(bnp
<i
- - N\ [ 2 4 ]
g = By B sy = 2 Syl Bt B g F By
i=1

j=1,2,...,m-2
a ,b =0 for all r <0
r’x

" " r>n

a =1
n

tk-n-1 cr= 0 for all r <0

y(k)(t) has impulses at the origin of

order and magnitude
mtk-n-2 c
o
. “mtk-n-3
0 .



APPENDIX 3

COMPUTER PROGRAMS

A3.1 Introduction

This appendix contains a computer program with associated
subroutines and function subprograms. The:purpose of the program
is to compute the modified initial conditions and fhe impulse infor-
mation for a single input/single output, linear, fixed system. The
data required is the system transfer function, I.C._ , and the input
function. The input function may be expressed as a standard function
in the time domain or as its Laplace transform provided thét the
transformed function is the quotient of two polynomials in s. 1In
the latter case, the general algorithm is used for computation.

In the former case, the direct algorithm is used.

Subroutines ALPH, NUM, XPRINT, and FRACTIN are of secondary
importance since their purpose is only to print the input function
and quotients of two polynomials in a conventional form. The purpose
of the other subroutines and function subprograms is to compute the
constants

c(1), I= 1,2,...,Jm

of the initial-conditions algorithms. It is expected that if one
should desire to use these algorithms in a programmed form, a main
program for the specific use would differ from the one that has been

used here.

A3.2 Data Representation

For the main program used, the data used by the program must

- 83 -
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be in the form dictated by the FORMAT statements. The sequencing of

the data cards is summarized below, and example data and output for

several simple systems is provided

Data

M,N

(B(M+2-1),I=1,M1), (A(N-+2-I),I=2,N1)

YL(I),I=1,N

INP

The remaining data cards represent

a single card is used which is

ALPHA, BETA, G, L

at the end of this appendix.

Comments
These two constants represent the
order of the numerator and denomin-
ator, respectfully, for the transfer

function.

These constants represent the
coefficients of the two polynomials
of the transfer function, where

M1=M+l and N1=N+1,

These constants are the I.C._; i.e.,

(K-1)

(L®)=y " 7 (0))).

This constant has the value zero if
the Laplace transform of the input
function is read. Otherwise its
value is the input function number
corresponding to the number in

Table 1.

the input function. If INP # zero,

These constants correspond to the

constants of Table 1, where G=Yy.
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If INP is zero, the input function is represented by the data cards

MX, NX These two constants represent the
order of the numerator and denomin-
L ator, respectfully, for the Laplace

transform of the input.

(BX (MX+2-I),I=1,MX1), These constants represent the
(AX (NX+4+2-I),I=1,NX1) coefficients of the two polynomials
of the Laplace transform of the

input, where MX1=MX-+1 and NX1=NX+1,

\

Each entry represents data to be put on one card according to
the FORMAT of the appropriate input statement. However, when arrays
are read, it is permissible to continue the data of these arrays on

additional cards.

A3.3 Fortran Programs
A print-out of the main program, subroutines, and function

subprograms follow.
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A3.4 ‘FIOWCharts

Flowcharts of the main program, subroutine DIRALG, and
subroutine GENALG follow. No flowcharts for the other subroutines
and the function subprograms are included since these programs
are concerned only with formating of the output and performing

operations of secondary importance.



A3.4.1

R
7 MAIN
;PRQ?RAM“wM:>
/jl\\
J

M1=M+1
N1=N+1

N

READ
B(M+2-1)
A(N+2-T)

I

B

il

A(N1)=1

/

CALL
FRACTN
(M':B,N,A)

Y

o/

(I)’I=1, i

Y.

£
g

INP

Flowchart of Main Program

e

MX1=MX-+1
NX1=NX+1

}

READ
BX (MX+2-1)
(NX+2-1

CALL
FRACTN
MX , BX ,NX , AX)

—7E_

£

(o

B
R

L MULT
X,M, ni//
,N,N;;>>
—

CALL FRACTN\
+MX,B,N4§T;7/

& 2
o

(

(¢
>
=
"
]

=

b

gl

w

YES _

LPHA, BETA
o oL ///

rREAD /

CALL XPRINT
(INP,ALPHA,
BETA,G,L)

o

ALPHA,L, BET,
G,INP,M,N,B
A,JM,C)

v s

.

97 .

)
]

NP=M-MX
NQ=N-+NX

GENALG

-

I=1

CALL

A,

N,NP,NQ, B
JM,C)

¥

II=I-1
YR(I)=YL(T)
J=JM+II-N+1

NO

YES

I=I+1

YR (I)=YR(I)
4C (J+1)

|




A3.4.1 Flowchart of Main Program (continued)

4
Y
el
R |
Y
. TTnlel
(JM4II-N) PRINT
- I
. NO 1
P§§NT J=JM:I-N
31
FE
NORD=J-JJ

T I=I+1

JJ=JJ+1

98.



‘A3.4.2 TFlowchart of Subroutine DIRALG

SUBROUTINE
DIRAEE
\

Al=ALPHA
JM=M-1
V=0

99.

YES | =L
NO
IM=M-L-1
Y58 A1=Al%
AFACT (L)
of au=-3
- A1=A1#BETA®
2.0
YES
St JM=M-2
A1=A1%G

Al1=A1%BETA

Cc(1l)=A1%*
B(M+1) 1=1
AN+ =1
N\ S/
Y
IF
JM<1 YE N<I
RETURN
NO
i C(J+1)=
GO TO, INP 5 (J+1) -C (J+1-I)
21,21,22,23, *A(N+1-1)
23,26,29,23, ;

23,25,26,28

C(J+1)=0

(¢

J=J+1

c(J+)=
A1*B(M+1-J)
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~-A3.4.2 Flowchart of Subroutine DIRALG (continued)

5O

w

Y '/
Y ;
J=J+1
J=1 INP=G s
’ T . | = i
‘f \i., 3
C(J+l)= 6
I=1 |
e
x ' \ C(I+1)=
. C(JH)= C(J+1)-
' C(J+L-1)*V
C(J+1) =C (J+1) Al*B(lHl-J) : |
N-T20 D-YES__+(BETA*A (N-+2- -C (3) %A () |
I)-AN+1-I))* i \
C(J+1-I) -
Ivo
Cc(J+l)=
C(J+1)+ NO
BETA*A (1)

— | V=BB* .
S J=34 e o

7| V=V+A (N+1-1)

BB=BETA¥* -'—h—'@
BETA
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A3.4.2 Flowchart of Subroutine DIRALG (continued)

©

~ YES | V=V-2*BETA%
R J ‘e
J Z iNO =

e

—

BB=BETA*BETA

*G*G = -1) |

J=1 V=V+A (N+1-1) j

Y4 mcases e |
C(J+1)=A1%
B(M+1-J) - C (J+1)=C (J+1)
C(I)*(a() - -C(J+1-1) %V

2%BETA) .
c(J+1)=C (J+1)!
YES| -A1%BETA* NO

B(M+2-J) I= | I=I+l

/NO I A . . SR S

YES

NO \

J=J+1

YES

N+2<I
NO

R

V=BB*A (N-+3-1)

—

e
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" A3.4.2 TFlowchart of Subroutine DIRALG (continued)

.iv

“l;

V=-BETA%*
BETA

C(2)=A1%
B(M) -C(1)*
A1)

NO

"
o
NN

2

C(J+1)=A1%*
(B(MH1-J)+V*
B(M+3-J)) -

C (J)*A ()

N+4<T

Y NO

r.:(‘.._.. e —

10

N+221

=

YES
>

!
V=V-+2%A (N+3-1I)
*BETA*BETA

N2I

0

YES

| V=V-A (N+1-T)

Y<

C@+l)=
C(J+1) -
C(J+1-I)*V

I=I+1

V=V-+(BETA®%4)
*A (N-+5-1)

11




A3.4.3 Flowchart of Subroutine GENALG

{ SUBROUTINE j
GENALG

A

JM=P+4N-Q
C(1)=B(P+1)

YES 7
JM<0 a>4
RETURN
(e )
NO
w/
J=1
C (J+1)=B(P+1-J)
1=1
I=I+1
I>Q A
0
C(I+1)=
C(J+1) -
C(J+1-I)*
A(Q+1-I)
{
NO B
N
5. 3= %1 3=in
YES

RETURNh\\

/

103.
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A3.5 Sample Runs

This section contains seven sample runs using the programs of
Section 3.5.3 . Runs 1,3,5, and 6 use the general algorithm for
modifying the initial conditions. Rums 2,4, and 7 use direct algor-
ithms to solve the same problems as tﬁose given in runs 1,3, and 6
respectively.

The data used for each run is shown on the following pages.

The results for each run follows these pages.
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A3f5.2 Sample Results

TRANCFER FUNCTION

"
-
B |
=2
]
E
—

Tle) =

Rk 01 4 1,00
TADIT ) B L Y -
T 3 ST ORRR ey s I -
INTTTAI CONDITICNS OF THE NUTPUT
COURERTVATIVE S i FET HAND T RITHT FANE T o
o s, .t 1.00 .00
TMPUIL SES AT THF NPTRTN
i SHTEE s e — .
Y (T CNC TMPULSES
TRANSFER FUNCTTON B ) L
1 T(8) = 1.00 RUN 2
1 S01 4 1,00
NPT
t o
X(TV= 1.000FL (1)
INTTIAL CONDITTIONS NF THE CUTPUT
NEP VATV LFFT EAND PICHT FANT
0 .00 Z+00 )
TTYMPUTSFES AT CTHE NRIGTN
t 0y : A
Y (T NC IMPULSES




TPANSFER FIINCTTINN

109, e

I

T(C) = SO01 4+ 1,00 RUN 3

- —— - -

TADIT

T E T o e e

INTTTAL FONRTTICONS FF THF OUTPUT

LFFT HAN
1

NEDTYATTIYE

TMPIN CFE AT THF NPIGIN

C

Y (T) FfE ORNEP AND MACNTTIHICE

ST SRR SES = SO 1 . (’ 0 A S —— AP — 8
? "1 .ﬂO
1 ' ; 2400
0 -’04. CO

_TRANSFER FURCTIEN

T(<) = 01 » 1,00 RUN &

TINPOT

(L 2)
Xtry= T.ONTFL (1)

INTTTAL CONRITICNS 0F THE CUTPUT

NDERTVATTIVFE | FFT HAND RICGHT FANT
0 1.00 9.00

NP SES AT THT ARTGTN

(0
Y (1) (F Oprrp AND MAGNTTUTF
2 1.00
2l =1,00
1 2e00
o 0 <4.C0




TPANSIED FUNCTION
. —— - Al e 110. .................. h

’ S5 4+ S04 - 507 - 7.,00502 + SC1 ¥ 1.00

INTTTAL CONDITI

CFETHF NUTPUT

TFRIVATIVET T T T T UEFY HAND T RTIGHT FART
0 1,00 11,00
1 0.0 TeCC
? N.0 73.00
L) -1.00 =The Ol

~ O IMPOLSES AT THF ORTGIN - ! - =

(0 )
Y Ty T NT TNPULSFEST

(2%

(1) = :

(T CF NRNER AND MAGNTTUTF

Y (T) CF NRPFP AND MACNTTUFF

= ¥ o BB i — 1C.C0

0 10,00
0 7,00

( ) j = =k
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